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ABSTRACT

Ultrasonic nondestructive evaluation (NDE) is a well-established technique to 

assess material properties and material state in noninvasive way. However, conventional 

NDE technologies are limited by the thick top coatings over the structure and, therefore, 

require time consuming removal and replacement of the coatings to perform the 

inspection. In biological application, although ultrasonic NDE is a safer method in 

compared to other radioactive non-invasive techniques, aberration of acoustic beams is 

more common as it encounters multiple tissue layers of complex geometry with non-

homogeneous properties. These limit the use of ultrasonic NDE in engineering and 

biological applications. To alleviate this problem, recently developed multifunctional 

metamaterials are studied and proposed as an ad-hoc metastructure to focus acoustic 

ultrasonic wave beam. One of the intriguing features of these metastructures is that it can 

be utilized along with conventional NDE transducers. In general, exotic acoustical 

features such as acoustic transparency, ultrasonic beam focusing, acoustic band gap and 

super lensing capabilities are extracted using metamaterial structures. While 

metamaterials can focus an ultrasonic beam at specific frequency, unwanted distortion of 

the output wave fields at neighboring sonic frequencies are obvious in the host medium. 

However, ultrasonic wave focusing by virtue of negative refraction and simultaneous 

transparency of the metamaterial at sonic frequencies are uncommon due to their 

frequency disparity. In this research, two metamaterial structures are proposed: 1) to 
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achieve acoustic beam focusing at ultrasonic frequency and keep the structure transparent 

to the sonic frequencies (<20 kHz)an array of butterfly-shaped thin ring resonators are 

proposed and 2) to achieve wave focusing and generating Bessel Beam propagation 

through a thick composite plate a novel high symmetry interlocking micro-structure is 

studied and proposed as an ad-hoc metastructure infront of the ultrasonic NDE 

transducers, .  

1) The butterfly metamaterial with local ring resonators or butterfly crystals (BC) 

were previously proposed to create wide band gaps (~7 kHz) at ultrasonic 

frequencies above 20 kHz. However, in this research a unique sub-wavelength 

scale wave focusing capability of the butterfly metamaterial utilizing the negative 

refraction phenomenon is demonstrated, while keeping the metamaterial block 

transparent to the propagating wave at lower sonic frequencies below the 

previously reported bandgaps. 

2) A novel high symmetry interlocking micro-structure is recently being investigated 

with optimized geometry for extracting improved mechanical properties such as 

high stiffness-high damping and high strength-high toughness. However, the 

study of elastic wave propagation through these high symmetry micro-structures 

is still in trivial stage. In this dissertation, the band structures, mode shapes and 

equifrequency contours at multiple frequencies are studied for this interlocking 

architecture and it was discovered that at specific ultrasonic frequency wave 

focusing and generating Bessel Beams are possible. Through modal analysis such 

phenomena are physically explained. The finite element simulations are 

performed for long distance wave propagation and the results are post-processed 
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to show the actual existence of Bessel Beam phenomenon at ultrasonic frequency 

~271 kHz. A concluding simulation is performed using ad-hoc interlocking 

metastructure to propagate wave through a combination of attenuating epoxy and 

composite plate. Full penetration of wave inside thick composite plate is clearly 

observed. 

To visualize the wave propagation in engineered materials, like composites and 

metastructures, a reliable but fast wave simulation tool is required.  Wave propagation in 

Metastructure in conjunction with attenuative composite structure or aberrative biological 

surfaces, is difficult to accomplish. Traditional approach uses Finite Element Method 

(FEM) which is consistently known to be difficult at higher ultrasonic frequencies due to 

spurious reflection at element boundaries. Hence, to reduce the number of elements in the 

structure a new simulation tool using spectral information is necessary. In this 

dissertation, a computational tool based on higher order Spectral Element Method is 

developed from scratch to solve temporal wave propagation problem in three-

dimensional composite structures. This tool will facilitate to understand the wave damage 

interaction and optimize the geometric dimensions to construct the metastructure in later 

times. There are multiple computational tools available now-a-days to simulate wave 

propagation problems. Among others, Distributed Point Source Method (DPSM), Finite 

Element Method (FEM), Semi Analytical Finite Element (SAFE), Local Interaction 

Simulation Approach (LISA), Peri-Elastodynamic (PED) are few of them. DPSM is 

frequency domain based computational tool which is unable to solve temporal problem 

proposed in this research. PED is suitable to solve wave propagation in metallic structure; 

however, it has not yet been implemented in composite structures. Although FEM is a 
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flexible method to implement for complex geometries, spurious reflection, lower 

accuracy and higher computational time make it less effective. To overcome the 

disadvantages encountered by FEM, Spectral Element Method (SEM) is recently 

proposed for its higher accuracy and fast convergence. Therefore, in this dissertation, 

SEM has been proposed to visualize high frequency ultrasonic wave in a range of 1 MHz 

to 7.5 MHz, which is not available in current literature. Various modules of the computer 

code using MATLAB are developed and simulation was performed for wave propagation 

through a 24-ply laminated composite plate. The simulation results were compared with 

experimental observations, and a good agreement of simulation and experiment was 

observed.
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CHAPTER 1  

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Ultrasonic Non-Destructive Testing (NDT) is a technique of evaluating the 

physical properties such as fracture toughness, ductility, ultimate tensile strength, impact 

resistance, ductility etc. of structural components. It is also a well-established method to 

use high frequency acoustic waves to detect and evaluate flaws or damages, measure 

dimensions and characterize materials in noninvasive way. As a driving NDT technology, 

the ultrasonic nondestructive evaluation (NDE) has become a powerful tool to use 

extensively in metal processing, manufacturing, oil and gas, aerospace and defense 

industries. Along with metals and alloys, the ultrasonic NDE has been successfully 

utilized in concrete, wood and composite structures, making it serviceable in the 

construction industry. The expansion of automobile industry and stringent safety 

regulations in structural health monitoring (SHM) for multiple industrial applications 

such as aerospace, civil and defense are playing a vital role for the growth of NDE 

applications. Exponential rise in urbanization and emergence of industrial revolution 4.0 

have generated massive demand for advanced technology in various research disciplines 

which is one of the leading factors to the expansion of ultrasonic NDE market on the 

global scale. 
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To support these huge applications, a large group of researchers has been working 

for decades to improve these techniques. In the core of ultrasonic research, ultrasound 

waves are distributed in the material or object to be tested noninvasively. In a more 

common ultrasonic testing applications, short ultrasonic waves that have center 

frequencies in the range of 0.1 to 15 MHz, and in some cases up to 50 MHz, are 

transmitted into objects or materials to characterize materials or detect internal defects or 

flaws. The ultrasonic energy transmitted through and reflected from a defect contain a 

considerable information about the nature of the spread of the flaws or damage. Post-

processing of these transmitted and/or reflected energy information are utilized to 

evaluate the material state condition. 

One of the limitations of the current ultrasonic NDE technology is the inability to 

inspect composite substrates with inherent curvature located below attenuative topcoats 

with thicknesses ranging from 0.15-0.30 inches. Conventional NDE technologies are 

limited by the thick top coatings over the structure and therefore require time consuming 

removal and replacement of the coatings to perform these inspections. While the coatings 

of interest are highly attenuative to ultrasound, it is the most effective and safe NDE 

method with the desired resolution for damage detection, and it has always been a 

preferred method over others such as microwave and THz wave. However, the 

dissipation/attenuation of ultrasound waves and the aberration of focused ultrasound 

through the coated layer makes ultrasound ineffective to inspect composites below the 

topcoats without removing them. Additionally, ultrasound inspection through curved 

surfaces are also challenging using the flat head ultrasound transducers. Hence, a 
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significant opportunity exists to address this challenge while proposing a novel NDE 

solution to inspect the structures through the coating layer without removing them. 

In biological applications, ultrasound NDE has been proven as a safer method to 

assess internal parts of a human body in compared to existing other techniques such as x-

ray, MRI and CT scans. However, when using ultrasound in biomedical engineering 

applications, acoustic beams encounter multiple tissue layers of complex geometry with 

non-homogeneous properties. For instance, an accurate control of the focused beam is at 

the basis of focused ultrasound therapy techniques, e.g., as in high intensity focused 

ultrasound hyperthermia, thermal ablation or histotripsy, or in extracorporeal shockwave 

lithotripsy [1, 2]. Focusing directly into human soft tissues can efficiently be achieved by 

using conventional systems as ultrasound beam aberrations are typically small in these 

media [3]. However, when the target tissue lays behind high-impedance tissues, e.g., soft-

tissue surrounded by bones, the beam experiences strong aberrations due to refraction, 

reflection and absorption processes [4]. Some applications make the use of existing 

acoustic windows by targeting tissues from specific locations. Nevertheless, in the case of 

transcranial propagation, skull bones are always present in the path towards the central 

nervous system (CNS). In this way, the precise control of acoustic focus into the CNS is 

mainly limited due to the strong phase aberrations produced by the refraction and 

attenuation of the skull [5]. Therefore, propagation of ultrasonic wave beam through 

aberrative biological surfaces remains a challenge for the researchers.  
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1.2 BACKGROUND 

Despite the presence of attenuative and aberrative surfaces, many industries rely 

on ultrasonic NDE to assess structural integrity and evaluate structural health. The 

aerospace industry especially commercial aircraft operators and military aircraft 

operators follows stringent regulations imposed by the respective aviation authorities for 

the safety and reliability of the passengers and the aerospace products. In defense such as 

U.S. Air Force strives to maintain a very high operational availability of aircraft and has 

an ongoing need to reduce total ownership costs, increase reliability, and extend the 

lifecycle of equipment and systems to improve overall readiness of the fleet. The costs of 

inspection and maintenance for Air Force aviation alone increases every year and 

currently costs more than $24 billion per year [6]. Much of this cost is due to scheduled 

maintenance activities, which often require the removal of paint and coatings from an 

aircraft, or the complete disassembly of component parts for inspection. The current 

standard practice used during maintenance activities involve the complete stripping of an 

aircraft coating system to inspect the outer skin of the aircraft. These maintenance 

procedures are currently required to inspect for hidden damage that could compromise 

the structural integrity of the aircraft if left unchecked. Several studies have been 

conducted to evaluate the nondestructive inspection techniques to provide thru-coating 

inspection, to varying degrees of success. Except for the ultrasonic method, none of these 

techniques provided satisfactory results, and all are unacceptable to some degree. 

Paints and coatings perform vital roles in protecting fuselage, wings, and other 

aircraft structures. In addition to aesthetics, image, and camouflage, there are several 

technical reasons for painting both metal and composite structures. For metals, coatings 
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help protect the structure from corrosion. For composites, the coatings primarily protect 

the structure from fluid damage, but are also sometimes needed for RF/EM shielding and 

lightning strike protection. Due to high strength-to-weight and stiffness-to-weight ratios, 

composite structures have seen a substantial increase of their use in the new generation of 

airplanes, where the entire fuselage and the wing structures are made of composites. But 

composite structures are susceptible to impact damage caused by hail, bird strikes, or 

accidental tool drops. The damage may be delamination, fiber breakage, and/or matrix 

cracking, or a combination of all the above. In addition, the damage may not be visible on 

the outer surface, and the thick topcoat limits the effectiveness of conventional 

nondestructive evaluation technologies to detect the damage. Therefore, the coatings are 

removed to perform the inspection and then reapplied afterwards. This process is 

prohibitively time consuming and increases inspection and/or maintenance downtime by 

up to 1000 times. Eliminating the need to remove the coatings would enable capabilities 

for long-life coating systems and condition-based maintenance practices resulting in 

significant reductions in hazardous waste generation, dramatic cost savings, and 

enhanced readiness levels for a wide variety of Air Force systems. 

In 2007, Army Research Laboratory (ARL) studied the efficacy of performing 

fluorescent penetrant inspection (FPI) and magnetic particle inspection (MPI) over 

coatings to detect cracks in metal substrates [7]. ARL found that performing FPI of 

cracks over a coating proved futile. There existed no path for the penetrant to infiltrate 

and collect within the cracks, and the paint absorbed a great deal of penetrant, which led 

to high background fluorescence. Similarly, one layer of coating greatly reduced the 

effectiveness of MPI, and two layers completely masked the cracks. Air Force Research 
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Laboratory (AFRL) assessed various NDE methods for detecting hidden damage on 

metal substrates through thin (0.003-inch-thick) aircraft coating systems [8]. Example of 

these NDE methods are immersion ultrasound, laser ultrasound, passive thermography, 

film radiography and evanescent microwave NDE. In all cases, the major effect of the 

coatings was to add noise to the NDE measurement, which affects detection sensitivity 

levels. But all were still able to detect underlying damage on the metal substrate, albeit 

through a very thin coating (0.003-inch-thick), and also there were issues with thicker 

coatings and inspecting through specialized coatings.  

1.3 RESEARCH OBJECTIVES 

The key objective of this research is to develop an NDE technique to inspect 

graphite/epoxy composite substrates through thick specialty topcoats which is a major 

challenge in current ultrasonic NDE. There are many NDE methods used to inspect 

composite materials, including ultrasound, X-ray, thermography, and relatively new 

terahertz (THz) radiation technology [9]. THz radiation shows promising results for 

glass-fiber composites but has limited viability for graphite-epoxy composites because 

the conductive carbon fibers prevent penetration of the THz radiation [9]. Nevertheless, 

none of these NDE methods can currently inspect through the thick specialty coatings. Of 

all the currently used techniques, ultrasonic inspection is rated as the best overall 

evaluation method to detect various types of composite damages. Therefore, ultrasonic 

inspection would be a viable candidate, however, the coatings are highly attenuative to 

conventional ultrasound waves.  
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In attenuative and/or aberrative surfaces, gradual spatial spreading of the 

ultrasonic signals is generally caused by diffraction of the ultrasonic waves in the 

material. Dispersion of the wave happens due to the combined effect of structural and 

material properties, and manifests by temporal spreading of the ultrasonic wave signals. 

When the amplitude of the signal reduces over a length of the propagation distance, the 

signals are said to be attenuated. The ultrasonic stress wave partially converts its energy 

into heat, and it loses its amplitude. Hence, to avoid the above situations, acoustic energy 

needs to be concentrated or focused at a certain depth which will be suitable for 

ultrasonic NDE of composites underneath the coating layer and/or biological aberrative 

surface. Alternatively, an acoustic ultrasonic wave needs to be generated which is capable 

to propagate long distance with negligible amplitude attenuation. One solution could be 

to generate ultrasonic Bessel Beam which will not diffract or spread out as it propagates 

over a long distance. Such Bessel Beam can be utilized to penetrate through the 

attenuative coating layer and the composite structure. 

1.4 SOLUTION APPROACHES 

NDE of composite substrates underneath a coating layer or through a biological 

aberrative layers is a persistent problem, which many researchers have attempted to 

address through various techniques. Till today, it remains a challenging problem without 

a viable solution. Although ultrasonic NDE, being the most effective noninvasive 

inspection method, is used for most cases to perform NDE of composites, it requires 

removal of the topcoat to penetrate deep inside the composite. Moreover, in biological 

applications, the aberrative nature of the skulls, bones and soft tissue surrounded by the 

bones makes ultrasonic NDE less effective. Hence, although ultrasound is a valuable 
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NDE method, it suffers from diffraction, dispersions and attenuation through the coating 

layers and aberrative surfaces. Therefore, a technique needs to be developed for 

ultrasound waves to pass through the topcoat and/or aberrative surfaces and focus or 

propagate the wave inside the composite. This will eliminate the need for the removal of 

the coating layer.  

To solve this problem, we are proposing two approaches in this research work. In 

the first approach, (1) we are proposing to adopt a metastructure in front of the traditional 

transducer to focus ultrasonic waves. Because of the exotic nature of the added structure, 

wave propagation inside the combined structure will be unknown. Hence, to visualize the 

unknown wave propagation behavior in the metastructure and the host substrate, in the 

second approach, (2) we are proposing to select Spectral Element Method (SEM) as a 

wave propagation computational tool for a frequency range up to 7.5 MHz.  

THE FIRST APPROACH 

 In the first approach, two metamaterial structures are proposed. The reason behind 

proposing these two metamaterials are stated below. 

(1)  The first metamaterial is proposed to understand and achieve acoustic beam 

focusing at ultrasonic frequency and keep the structure transparent to the sonic 

frequencies (<20 kHz). In designing this acoustic metamaterial, a butterfly shaped 

engineered metamaterial consists of an array of stainless steel split ring resonators 

of different sizes embedded in epoxy matrix [10] is envisioned for the wave 

modulations. This structure has been analyzed for multifunctional design 

objectives. Just by manipulating one meta structure orientation and number of unit 
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cells, the proposed butterfly structure can induce multiple acoustic features such 

as band gap, acoustic transparency, wave focusing and superlensing. To achieve 

the acoustic features and create the dependencies at multiple frequencies, 

individual split resonators that creates the local anisotropy at multiple scales is 

introduced in a butterfly shape. The shape and the orientation of the proposed 

model are purposefully designed for acoustic wave bifurcation and focusing of the 

wave field, when the geometrical configurations (e.g. ring thickness) and the 

number of repeating unit cells are constructed for low frequency acoustic 

transparency. One of the intriguing properties of the proposed structure is the 

negative refraction which has been analyzed and utilized to extract the behavior of 

acoustic lens.   

(2) The second metamaterial, a novel high symmetry interlocking micro-structure, is 

studied and proposed as an ad-hoc metastructure infront of the ultrasonic NDE 

transducers to achieve wave focusing and generating Bessel Beam propagation 

through a thick composite plate. Initially, an interlocking micro-architecture 

design was reported for the extraction of improved mechanical properties. The 

acoustic responses of this micro-structure show the existence of band gap and 

near isotropic behavior which are suitable for wave trapping and attenuation. 

Recently, this structure is being investigated with optimized geometry for 

extracting improved mechanical properties such as high stiffness-high damping 

and high strength-high toughness. The optimized metastructure, which is 

proposed in this research, has the capability to focus ultrasonic wave and to 
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generate Bessel Beam where the amplitude of the propagating wave does not 

diffract or spread out as it propagates through a long distance. 

THE SECOND APPROACH 

In second approach, we intend to develop a computational tool that can 

effectively solve wave propagation problem when multiple interphase layers are 

combined. This computational tool will visualize the wave propagation behavior when 

the ad-hoc metastructure is present in between traditional transducer and coated 

composite structure or biological aberrative surfaces. In later times, this tool will provide 

an understanding how propagating wave interacts with the defects present in coated 

composite or assess the biological parts at normal and abnormal conditions. Moreover, 

practical construction of metastructures and/or transducers to propagate ultrasonic waves 

through coated composite structures requires optimization of geometry parameters which 

can be determined by utilizing this computational tool. To simulate wave propagation 

problems, there are multiple computational tools available now-a-days. Distributed Point 

Source Method (DPSM), Finite Element Method (FEM), Semi Analytical Finite Element 

(SAFE), Local Interaction Simulation Approach (LISA), Peri-Elastodynamic (PED) are 

few of them. However, each of the methods has its disadvantages. For example, DPSM is 

frequency domain based computational tool which is unable to solve temporal problem 

proposed in this research. PED is suitable to solve wave propagation in metallic structure; 

however, it has not yet been implemented in composite structures. Although FEM is a 

powerful method, spurious reflection, lower accuracy and high computational time make 

it less effective. To overcome the disadvantages of these techniques, we are proposing a 

recently developed computational technique, Spectral Element Method (SEM), for its 
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higher accuracy and fast convergence. The developed tool will simulate wave 

propagation in non-coated laminated composite with a frequency range of 1MHz to 7.5 

MHz. Further, it will also simulate wave propagation in coated-composite along with the 

ad-hoc metastructure that has been proposed in the first approach. The experimental 

validation of simulation results is proposed with 1 MHz to 7.5 MHz transducers with and 

without coated-composite substrate.  

1.5 DISSERTATION OUTLINE 

This research demonstrates design of two acoustic metamaterials capable of 

focusing acoustic energy and generating Bessel Beam. It also presents a computational 

tool to facilitate wave propagation inside multilayered composite structure. Moreover, an 

experimental validation of the results obtained by the computational tool is demonstrated 

herein. This dissertation is organized as follows: 

Chapter 1: Explains the problem and the objectives of this study. The approaches adopted 

to achieve these objectives with the inherent motivations are outlined in this chapter. 

Chapter 2: Butterfly structured acoustic metamaterial design and the demonstration of 

acoustic focusing phenomenon is presented. An exotic acoustic feature, negative 

refraction, has been designed and analyzed with band structure, mode shape and 

transmission coefficients. 

Chapter 3: Investigation of high symmetry interlocked structured metamaterial is 

presented here to demonstrate the wave trapping and attenuation behavior by utilizing 

modal analysis and wave transmissibility. 
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Chapter 4: Investigation and integration of optimized interlock structured metamaterial as 

an ad-hoc metastructure is demonstrated here. Wave focusing and generation of Bessel 

Beam are utilized to propagate wave through a combination of attenuating epoxy and 

composite structure. 

Chapter 5: A fundamental difference between FEM and SEM, and applicability of SEM 

in wave propagation problem are presented in this chapter. Wave propagation in 

multilayered composite specimen has been formulated in 3D and a simulation of 

displacement behavior is presented by varying input parameters.  

Chapter 6: Implementation of Spectral Element Method to solve wave propagation in 

multilayered composite structure has discussed in this chapter. Simulation results with 

computer code has been presented, and an experimental validation of the simulation 

results are discussed herein. 

Chapter 7: Summarizes the work presented in this dissertation and outlines a scope of 

future works. 
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CHAPTER 2 

A MULTI-MODE ACOUSTIC METAMATERIAL ARCHITECTURE FOR EXTRACTING 

ACOUSTIC TRANSPARENCY, WAVE FOCUSING AND SUPERLENSING BEHAVIOR 

2.1 ABSTRACT 

Exotic acoustical features such as acoustic transparency, ultrasonic beam 

focusing, acoustic band gap and super lensing capability using a single metamaterial 

architecture is unconventional and unprecedented in the literature, demonstrated herein. 

While metamaterials can focus an ultrasonic beam at specific frequency, unwanted 

distortion of the output wave fields at neighboring sonic frequencies are obvious in the 

host medium. However, ultrasonic wave focusing by virtue of negative refraction and 

simultaneous transparency of the metamaterial at sonic frequencies are uncommon due to 

their frequency disparity. To circumvent this problem and to avoid the unwanted 

distortion of wave at sonic frequencies, metamaterial with an array of butterfly-shaped 

thin ring resonators are proposed to achieve the beam focusing at ultrasonic frequency 

(37.3 kHz) and keep the structure transparent to the sonic frequencies (<20 kHz), while 

resulting local anisotropic material behavior. The butterfly metamaterial with local ring 

resonators or butterfly crystals (BC) were previously proposed to create wide band gaps 

(~7 kHz) at ultrasonic frequencies above 20 kHz. However, in this study a unique sub-

wavelength scale wave focusing capability of the butterfly metamaterial utilizing the 
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negative refraction phenomenon is demonstrated, while keeping the metamaterial block 

transparent to the propagating wave at lower sonic frequencies below the previously 

reported bandgaps.  

2.2 INTRODUCTION 

The last two decades have witnessed unique and careful design of several 

artificially engineered composite materials called metamaterials. The composite 

metamaterials are envisioned for various practical applications to manipulate the acoustic 

waves [11-19] in a unique way. Periodic structures both in photonics and phononics, are 

capable of significantly alter the wave propagation phenomena in the host media. Thus it 

inspired a large group of researchers to realize several mechanisms for wave front 

modulation [20-23] using the periodic structures. However, most of the research were 

performed to manipulate the acoustical waves at specific and/or predefined frequencies 

[24, 25]. The presence of periodic metamaterial structures not only generates unique 

feature at the designed frequency, it also alters the wave fields inside and outside the 

metamaterial at off-designed frequencies (outside the band of specific designed 

frequency), in an unintended/uncontrolled way. Eventually, this limits the application of 

the metamaterials for wide frequency applications.  

To solve this issue, here in this article it is proposed that the periodic structures 

need to be designed in such a way that the metamaterial system should not affect the 

propagating wave field until the designed frequency is reached. That means that the 

metamaterial system should behave as a acoustically transparent media, except at the 

desired frequency at which it is expected to behave as metamaterial and demonstrate a 
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specific designed phenomenon. The range of frequencies where the incident waves can 

transmit without any distortion can be called ‘Acoustically Transparent Range’.  

On the other hand, the possibilities of focusing the elastic waves through 

metamaterials, led the researchers to design acoustic phononic [26] lenses embedding  

intricate geometrical variations in host materials. Similar approaches were also adopted 

for photonic lenses [27, 28] in electromagnetic applications. Many researchers have 

successfully demonstrated the acoustic flat lenses using phononic crystals in a periodic 

fashion. Fascinating wave propagation phenomena such as single and double negative 

refraction [29], orthogonal wave transportation [17], non-diffracting Bessel beam [30], 

sub-wavelength scale wave focusing [30] and multiple wave scattering etc., were 

demonstrated by various periodic structures. Recently, a topologically optimized [31] 

two-dimensional acoustic lens was successfully implemented in underwater imaging. 

While the applications of these metamaterials are fully realized, acoustic wave focusing 

may have larger impact with ultrasonic frequencies in biomedical imaging and surgery 

[32]. It is established that the resolution of the conventional flat lens is limited by its 

diffraction limit due to the diminishing evanescent component of the propagating waves 

[33]. Hence, the possibility of achieving the subwavelength information is a topic of 

interest, if can be achieved by the metamaterials. So far, one of the promising method that 

has been proposed is to utilize the negative refraction property of the meta structures with 

constituent phononic crystals to construct the Super-lenses [34]. Although the concept of 

Super-lenses was first coined in photonics, it is now also exploited in acoustical studies.  

In this chapter, a butterfly shaped engineered metamaterial consists of an array of 

stainless steel split ring resonators of different sizes embedded in epoxy matrix [10] is 
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envisioned for the wave modulations discussed above. Just by using one meta structure 

orientation, Butterfly metamaterial is proposed to simultaneously demonstrate multiple 

acoustic features such as acoustic transparency, wave focusing and superlensing at 

respective different frequencies. To achieve the acoustic features and create the 

dependencies at multiple frequencies, individual split resonators that creates the local 

anisotropy at multiple scales is introduced in a butterfly shape. To achieve the 

transparency at lower frequencies it is necessary to have near isotropic behavior of the 

meta structure in global scale whereas, to achieve other phenomena discussed above can 

be achieved by creating the local anisotropy. Hence, the shape and the orientation of the 

proposed model are purposefully designed for acoustic wave bifurcation and focusing of 

the wave field, when the geometrical configurations (e.g. ring thickness) and the number 

of repeating unit cells are constructed for low frequency acoustic transparency. 

Furthermore, the presence of wave focusing capability dictates the negative refraction 

property of the structure which resulted superlensing phenomenon.  

This chapter is divided into four sections. Initially, eigenfrequency analysis is 

performed to identify the dispersion behavior of the proposed butterfly structure within 

the first Brillouin zone. In section two, a frequency domain study is performed to validate 

the simulated configuration. As no wave should pass through the bandgaps, a material 

block constructed with butterfly structure shows that indeed the wave was totally blocked 

at the band gap frequencies. Also, acoustic transparency behavior of the proposed 

structure and a frequency domain study below ~18 kHz are demonstrated in this section. 

In section three, the modal behaviors around ~37 kHz was identified and a possible wave 

bifurcation and wave focusing capabilities are predicted in the structure. A frequency 
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domain study is performed to confirm the wave focusing phenomenon, and subsequently 

the range of focusing frequencies are identified. The last section of this article identifies 

the negative refraction phenomenon and the superlensing capability of the proposed 

butterfly structure.  

2.3 DISPERSION CURVE OF THE BUTTERFLY STRUCTURE 

Since the mode shapes and the respective group velocities are crucial parameters 

to understand the wave propagation through a structure, a dispersion relation for the 

proposed unit cell (Figure 2.1a) is obtained by performing an eigenfrequency analysis of 

the structure proposed. The geometric dimensions and the material specifications 

reported in reference [10] are used in this article and are summarized in table 2.1.  

Table 2.1. Geometric dimensions and material properties. 

Component Name Outer Dimension 
(mm) 

Material 

M1 Diameter – 5.387 Epoxy 
E = 2.35 GPa 

ρ  = 1110 kg / m
3
 

ν = 0.38 

M2 Major Radius – 10.2 
Minor Radius – 5.08 

M3 2 X 2 Square 
R1 Diameter – 3.591 Stainless Steel 

E = 205 GPa 

ρ  =  7850 kg/m
3
 

ν = 0.28 

R2, R3 Diameter – 7.183 
R4 Major Radius – 11.05 

Minor Radius – 5.969 
 

One of the objectives of selecting this unique butterfly structure is the presence of 

local geometric anisotropy at the material level and geometry level as shown in Figure 

2.1(b) but possess the near isotropic behavior at the global scale. While performing the 

eigenfrequency study, a rectangular periodicity of the unit cell is assumed. Using Comsol 
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Multiphysics V4.3 software, the dispersion relation is obtained by performing 

eigenfrequency analysis for different wave vector directions. The dispersion band 

structure shown in Figure 2.1(c) is computed for the MΓXM boundary of the first 

Brillouin zone [35] (ref Fig 2.1(d)) using the Bloch-Floquet periodic boundary condition 

[36].  

 

Figure 2.1: Dispersion relationship of the proposed butterfly design and the epoxy 
base material; (a) proposed unit cell consisting of steel-balls and elliptical steel 
rings in Epoxy, (b) the idea of anisotropic butterfly structure, (c) Dispersion 
relation of the 

While investigating the Figure 2.1(c), a large band gap from ~26 kHz to ~32 kHz 

was evident which is also reported previously in reference [10] . A further investigation 
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of the Figure 2.1(c) reveals the near linear dispersion (frequency vs normalized wave 

vector) relation below ~18 kHz, irrespective of ΓX (dashed window) or XM directions. 

This demonstrates the near isotropic behavior which is found in classical bulk isotropic 

materials [37]. Applying similar Bloch-Floquet periodic boundary condition on the base 

Epoxy material (i.e. without the butterfly constituents), dispersion relation was computed 

at the MΓXM boundary of the first Brillouin zone (Figure 2.1(e)). Upon comparing the 

dispersion relation in ΓX (dashed window) or XM direction for both the butterfly 

structure and the base Epoxy material, it is evident that both geometries have similar 

dispersion behavior. Hence an infinitely repeated butterfly unit cell placed in a 2D epoxy 

medium can act as a single isotropic material, and the presence of these unit cells will 

almost be unrealized below the ~18 KHz. Since the linear dispersion behavior is an 

indicative of spherical wave fronts in isotropic materials, it can be assumed that the 

proposed butterfly structure will disperse the transmitted waves linearly and will result 

nearly undisturbed wave fronts below ~18 KHz. As a result, the proposed structure will 

be acoustically transparent within this frequency range. 

2.4 SIMULATION SETUP TO PROVE THE ‘ACOUSTIC TRANSPARENCY’ 

To concrete the possibility of introducing ‘Acoustic Transparency’ using the 

proposed butterfly metamaterial model, a frequency domain simulation is performed. 

However, to verify the simulation model, initially a frequency domain study is performed 

choosing an arbitrary frequency from the bandgap region. Since incident plane waves 

from any direction do not propagate through the material made of butterfly shaped 

crystals (BC) at the band gap frequencies, a frequency domain study should reveal this 

phenomenon and would simultaneously verify the accuracy of the model. To achieve this 
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objective, a 112 mm x 100 mm epoxy plate is modeled using COMSOL Multiphysics 

V4.3. A butterfly crystal (BC) region, designed by an array of unitary cells identical to 

the one considered in Figure 1(a), is placed in the base plate. In particular, the BC 

arrangement consists of 22 rows and 6 columns of butterfly unit cells. A plane wave front 

is generated by the periodic displacement of a rectangular source with a dimension of 

127x12.7 mm2. A perfectly matched layer boundary condition is considered at all the 

boundaries of the base plate domain to approximate negligible wave reflection from all 

the edges. Figure 2.3(a) shows the geometric configuration of the setup before the 

rectangular exciter are actuated. Figure 2.3(b) shows the simulation outcome performed 

between the frequency ranges ~26 kHz to ~32 kHz (only one frequency at 30 KHz in 

shown in the Figure 2.3(b)). It is clearly evident that no displacement is observed neither 

at the BC nor at the Epoxy and the host material on the right. This confirms that no wave 

is transmitted through the BC within the band gap region.   

 

Figure 2.2: (a) Geometric configuration without excitation, (b) 
Simulation of wave field at a frequency from the band gap at a frequency 
of 30 kHz. 

Next, to demonstrate the acoustic transparency, plane crested wave is generated at 

the audible frequency range in Γ-X direction (along x-direction). Additionally, the unit 
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cells made of base Epoxy material having the butterfly structure is considered. 

Simulation was performed between 0 and ~20 kHz frequency within the audible 

frequency range. Results of these two simulations are presented in Figure 2.3 to have a 

visible comparison between the wave fields generated in the base material with and 

without the presence of the BC. Normalized total displacement amplitudes are plotted in 

Figure 2.3. Figure 2.3 shows the wave fields (total normalized displacement) at four 

acoustic frequencies with and without the BC arrangements. 

 

Figure 2.3: Normalized total displacement comparing the wave propagation at 5 
kHz, 15 kHz, 18 kHz and 20 kHz with and without BC region.  

Comparing Figure 2.3(a-1) and 2.3(a-2), at frequency ~5 kHz, it is evident that 

very similar circular wave fronts are generated in the base material and in the material 

with the BCs. This indicates that the presence of BC region does not affect the wave 

propagation at ~5 kHz. Similarly, at ~15 kHz and ~18 kHz, transmission of the circular 

wave fronts is also visible. Despite the presence of the BCs, patterns in the wave fields 
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are unaffected which are shown in Figure 2.3(b) and 2.3(c), when the microstructures are 

comparable to the respective wave lengths at respective frequencies. While the presence 

of the butterfly metamaterial region is unrealized by the incident waves at or below ~18 

kHz, circular wave front starts to alter due to the presence BCs at or beyond the ~19 kHz, 

i.e. towards the end of the audible frequency range. At ~20 kHz, the effect (Figure 2.3(d-

1) & (d-2)) of BC is strongly realized. Therefore, the proposed structure acts as an 

acoustically transparent media throughout the 90% of the audible frequency range but 

demonstrate meta structure features beyond ~20 KHz. It is designed such a way that the 

individual resonant frequencies of the steel-balls, split rings and the closed elliptical steel 

rings are achieved at frequencies higher than ~20 kHz, which resulted in acoustic 

transparency feature below the ultrasonic range. In ultrasonic frequency range (> 

20KHz), the propagation of the wave fronts and the wave fields are significantly affected 

by the BC region and, as an example, a large band gap region is shown in Figure 2.1(b). 

The acoustic transparency feature is particularly important in such cases where the effect 

of BC is desirable only in the ultrasonic frequency ranges when the material block is 

undetectable at the audible ranges.  

2.5 ANALYSIS OF MODE SHAPES FOR WAVE BIFURCATION AND WAVE FOCUSING 

In this section higher order dispersion curves, i.e. frequencies beyond the 

complete band gap, are studied along the ΓX and MΓ direction inside the first Brillouin 

zone. During this analysis, the concept of acoustic energy of a propagating elastic wave 

which directly depends on the group velocity was utilized, qualitatively. It is well known 

that higher group velocity of a propagating wave results higher acoustical energy [38]. To 

understand the qualitative measure of the acoustic energy, the mode shapes at different 
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points on the dispersion curves at the frequency ranges between ~37.085 kHz and ~37.43 

kHz were analyzed. In Figure 2.4, a portion of the dispersion curve in ΓX direction along 

with the mode shapes at ~37.3 kHz is presented. In the top section of Figure 2.4, mode 

shapes at points ‘a’ through ‘f’ are shown next to the frequency vs normalized wave 

vector plot in ΓX direction. Here, three distinct types of mode shapes are identified. 

Mode shapes at points ‘a’, ‘b’ and ‘c’, located on mode 18, have the same type of particle 

displacement at the unit cell level. Similarly, points ‘d’ and ‘e’ are marked on mode 17 

and have the similar displacement pattern. The last point ‘f’ which is on the mode 16 has 

different mode shape than that of all the other points. While points ‘a’, ‘c’ and ‘e’ are 

located outside the intended frequency range, identifying the mode shapes at these points 

is required to understand the influence of the dispersion behavior found in mode 16, 17 

and 18. It can be noted that points ‘b’, ‘e’ and ‘f’ are located on three different modes 

around at equal frequency level. The assumption that the mode shape patterns of these 

points are the determinant of the wave propagation direction, can be deduced from the 

respective acoustic energy requirement. Since the measure of the group velocity directly 

depends on the slope of the dispersion curve, it can be observed that 

𝑑𝑤

𝑑𝑘 ௕
>

𝑑𝑤

𝑑𝑘 ௙
>

𝑑𝑤

𝑑𝑘 ௘
 

i.e.,       𝐶௚
௕ > 𝐶௚

௙
>  𝐶௚

௘   

in other words,       Eb > Ef >Eb 

Therefore, it is indicative that the point ‘e’ possesses lower resonant energy 

compared to other two points. While the influence of three different mode shapes exists 
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at this frequency point, to propagate the wave with mode shape other than point ‘e’ 

requires higher acoustic energy. Considering this argument, mode shape of point ‘e’ can 

be taken into consideration for wave to be propagated in ΓX direction. A closer 

observation of the lowest energy mode shape at point ‘e’ reveals that the two non-

oscillating region exists alternatively among three higher-order oscillating regions; and 

all these oscillations are aligned along a line parallel to the ΓX direction. At point ‘e’, the 

strength of the oscillating region found at the middle of the unit cell is lower than that of 

the oscillations found at the top and bottom section of the unit cell. The displacement 

patterns of this mode shape indicate that the transmitting wave needs to be propagated in 

orthogonal direction to ΓX. Therefore, the mode shape of point ‘e’ directs the 

propagating wave to transmit in both +y and -y direction locally. However, the 

transmitting wave from the first unit cell to its adjacent second unit is again dominated by 

the mode shape of point ‘e’. Therefore, the second unit cell locally bends the transmitting 

wave orthogonally while maintaining the global wave propagation in ΓX direction. The 

lower part of Figure 2.4 (boxed part) explains this feature where ‘E’ and ‘P’ indicates the 

‘Excitation’ and ‘Propagation’ direction respectively. Since the butterfly unit cell can 

shift the transmitting wave orthogonally, incident plane wave is bifurcated into upward 

(+y direction) and downward (-y direction) directions locally while preserving the global 

wave propagation direction (i.e. the wave vector) in x-direction. Therefore, there exists 

three principle propagation direction of the transmitted waves; one along x-direction and 

the other two along the +y and -y directions. Resultant of the two principle directions, 

i.e., x and +y directions, enables the wave to follow in +45° direction. Similarly, resultant 

of other two driving directions, i.e., x and -y directions, enables the wave to follow in -
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45° direction. Hence, in a global case scenario, it is necessary that the transmitted wave 

should bifurcates inside the BC structure. 

 

Figure 2.4: Analysis of mode shape and possible wave propagation direction. 

To verify the above claim, a frequency domain study is performed for a frequency 

range of ~37.085 kHz to ~37.43 kHz. The dimension and the rectangular arrangements of 

the unit cells are kept similar as described in earlier section. At ~37.3 kHz, a remarkable 

wave focusing phenomenon was observed which is shown in Figure 2.5. This makes the 

proposed butterfly structure to act as a flat lens so as it can focus the incident plane wave 

in a single focal point. In Figure 2.5(a), it can be observed that the excited plane wave 
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initially bifurcates into two wave directions inside the BC, and afterwards these two 

waves converge into a single point at the outside of the BC.  

Inside BC region: At this frequency, when a plane wave excited at zero-degree 

angle impinges on Epoxy-BC interface, the first lobe of the transmitted wave is strongly 

dominated by the mode shape of point ‘e’ (Figure 2.4). The consecutive onward lobes of 

the transmitted waves show the displacement mode shape pattern as described earlier. 

However, these lobes consist of both rotated and non-rotated mode shapes of point ‘e’ 

which prevent them from nested bifurcation of the transmitted wave. In Figure 2.5(a), the 

zoomed-in image of the first lobe of the transmitted wave clearly identifies the dominated 

mode shapes. The particle mode shapes at the first and second columns of the BC region 

are exactly similar to the mode shape found at point ‘e’ which is in consistent with the 

hypothesis of lowest acoustic energy requirement. When these bifurcated waves come out 

of the interface formed by the BC and the epoxy, the transmitted waves (dashed red 

arrow) cross each other to make a prominent focus point as shown in Figure 2.5(a).  

AT BC and Epoxy interface: At this interface, incident waves are impinged at MΓ 

direction (in both +45° and -45° direction to x-axis). Therefore, the mode shapes are 

largely influenced by both x and y components of the wave vectors. To identify the 

dominant mode shapes, the portion of dispersion curve related to MΓ direction is 

analyzed. At 37.3 kHz, the mode shapes of mode 16, 17 and 18 are presented in Figure 

2.5(b). Slope at point ‘a’ on mode 16 has lowest value which indicates the lowest group 

velocity compared to the points ‘b’ and ‘c’. Therefore, the mode shape at the point ‘a’ 

possess lowest acoustic energy. Thus, propagating wave requires lowest energy to 

propagate with the mode shape similar to the point ‘a’. Hence, mode shape at point ‘a’ is 
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the dominant mode shape in MΓ direction. The complex oscillation pattern of the 

dominating mode shape at point ‘a’ can be utilized to explain the wave propagation 

direction. Considering the displacement pattern of the mode shape at the point ‘a’, it can 

be observed that the displacement of the particles along the two diagonals have different 

values. While the displacement along one diagonal is zero, the displacement of another 

diagonal is positive. The diagonalized displacement pattern creates 45° local wave 

propagation direction indicated by negative 45° black arrows in Figure 2.5(b).  Therefore, 

any wave incident at positive 45° at BC-Epoxy interface, transmits at negative 45° 

direction. By symmetry, waves incident at negative 45° at the BC-Epoxy interface, 

transmits at positive 45° direction. As the waves come out of the BC region and transmit 

through the isotropic epoxy media, the wave propagation direction remains same and 

eventually cross each other to form a circular focal region. 

Determination of frequency at maximum focal point intensity: At this point, the 

intensity of the focal points is calculated in terms of particle displacement for the 

intended range of focusing frequencies. It is determined that the focal points are located 

approximately 125 mm away from the PC region and, therefore, the total surface integral 

of the particle displacement is numerically calculated at these points. These 

displacements are plotted against increasing frequency as shown in Figure 2.5(c). A 

maximum oscillating displacement of 6x10-5 m2 is found at 37.28 kHz which is where all 

the mode shape patterns are analyzed.   
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Figure 2.5: (a) Determination of dominant mode shape in wave bifurcation, (b) 
Mode shape of points 'a', 'b' and 'c' in MΓ direction, (c) Identification of 
maximum total displacement at the focal point over the focusing frequency 
range. 

2.6 SUPERLENSING: BEYOND THE DIFFRACTION LIMIT 

The formation of acoustic focal points indicates the existence of negative 

refraction property of the proposed butterfly structure. While forming an acoustic image, 

the smallest feature that a conventional acoustic flat lens can form is limited by the 

spatial frequency. As the acoustic waves emitted from a source includes evanescent 

waves that conveys the subwavelength information, focusing waves into spot sizes 

smaller than the wavelength is almost impossible using conventional methods. To 

overcome this diffraction limit, a structure having negative refraction property can be 

utilized as a super lens. To investigate the possibility of superlensing capability of the 
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BCs, two different simulation configurations is designed. First, only one rectangular 

exciter of 12.7 mm x 12.7 mm (Figure 2.6a-1) is excited in the host media with a 

frequency of 37.285 KHz. Next, two exciters (Figure 2.6b-1) of similar size placed in the 

base Epoxy medium at a distance of 0.7𝜆 are excited at the same frequency of 37.285 

kHz. The distance, d, between two extreme points of two exciters was kept smaller than 

the wavelength of the base Epoxy material. To calculate the p-wave velocity in Epoxy, p-

wave elastic modulus, M, is used in the following equation:  

𝑉௉ = ට
ெ

ఘ
 where, M =

ா(ଵିణ)

(ଵାణ)(ଵିଶణ)
 

  

Figure 2.6: Demonstration of superlensing capabitity of Butterfly structure, 
(a) design configuration with one exciter, (b) design configuration with two 
sources. 
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At f = 37.285 kHz, the calculated wavelength is found to be 53.34 mm., and in 

simulation, the distance d = 38.1 mm is used which is about 0.7𝜆 as shown in Figure 

2.6(b-1).  

The simulation results of displacement amplitudes at the focusing area are 

presented in Figure 2.6(a-2) and 2.6(b-2). Any focal point measured a displacement 

amplitude greater than 100 µm2 has been presented as 1 µm2 in Figure 6. In case of one 

source configuration, a prominent single focal point is found with a displacement 

amplitude of 228.6 µm2, and in Figure 2.6(a-1), this amplitude has been shown as 1 µm2 . 

However, for the two-source configuration, clearly four focal points are generated as 

shown in the schematic diagram in Figure 2.6(b-1). From the simulation results, total 

displacement amplitudes of these four points are calculated numerically which are 198.12 

µm2, 178.6 µm2, 177.78 µm2 and 101. µm2. Since the displacement amplitudes of these 

focal points are greater than 100 µm2, they are presented as 1 µm2 in Figure 2.6(b-2). It is 

clear that the BC can create focal points of acoustic sources that are separated by less 

than one wavelength of the base Epoxy material. 

2.7 CONCLUSION 

In summary, a butterfly shaped engineered metamaterial consisting of an array of 

steel resonators at multiple-length scales embedded in Epoxy matrix has been analyzed 

which was previously proposed for creating wide band gap. The numerical analysis 

shows that the structure remains acoustically transparent to the propagating wave below 

~18 kHz.  A comparison of wave propagation simulation along with the dispersion curves 

confirms this feature with or without the repeating structure. To verify the simulation 
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configuration, wave propagation behavior is presented in the band gap region where no 

displacement is found for the particles located in and out of the butterfly crystals. In a 

frequency range of ~36.9 kHz to ~37.43 kHz, mode shapes are analyzed to understand 

the wave propagation behavior by establishing the relationship between the acoustic 

energy and the group velocity. Based on this analysis, the dominant mode shape in the 

resultant displacement field is identified which predicts an apparent wave bifurcation 

phenomenon inside the BC. In accordance with this concept, negative refraction feature 

of the unit cell arrangement is observed which attributed to the formation of acoustic 

focal point. The numerical results are shown to illustrate the predicted wave bifurcation 

and wave focusing phenomena. Thus, it has been established that the proposed structure 

is capable of focusing plane wave front which is incident at the normal direction to the 

BC interface. In this focusing frequency range, the maximum displacement of the 

focusing points is found as 6x10-5 m2 at ~37.28 kHz. By understanding this focusing 

mechanism, negative refraction property of the BC has been illustrated. Two acoustic 

sources are placed at a distance smaller than the wavelength of the Epoxy base material at 

~37.28 kHz. By measuring the displacement amplitude at the focal points created by 

these two sources, the superlensing capability of the BC structure has been demonstrated. 

In brief, the capability of creating multiple acoustic features such as acoustic 

transparency, wide acoustic band gap, acoustic flat lens and superlensing phenomenon 

can make this butterfly structure a suitable candidate for biomedical ultrasonic imaging, 

wave guiding and marine transportations.  
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CHAPTER 3 

INVESTIGATION OF WAVE TRAPPING AND ATTENUATION PHENOMENON FOR A 

HIGH SYMMETRY INTERLOCKING MICRO-STRUCTURE COMPOSITE 

METAMATERIAL 

3.1 ABSTRACT  

Extracting improved mechanical properties such as high stiffness-high damping 

and high strength-high toughness are being investigated recently using high symmetry 

interlocking micro-structures. On the other hand, development of artificially engineered 

composite metamaterials has significantly widen the usability of such materials in 

multiple acoustic applications. However, investigation of elastic wave propagation 

through high symmetry micro-structures is still in trivial stage. In this work, a novel 

interlocking micro-architecture design which has been reported previously for the 

extraction of improved mechanical properties has been investigated to explore its 

acoustic responses. The finite element simulations are performed under dynamic wave 

propagation load at multiple scales of the geometry and for a range of material properties 

in frequency domain. The proposed composite structure has shown high symmetry which 

is uncommon in fiber-reinforced polymer composites and a desirable feature for isotropic 

behavior. The existence of multiple acoustic features such as band gap and near-isotropic 

behavior have been established. An exotic wave propagation feature, wave trapping and 
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attenuation has shown energy encapsulation in a series of repeating structures in a 

frequency range of 0.5 kHz to 2 kHz.  

3.2 INTRODUCTION  

Design and construction of multifunctional materials is one of the challenging 

research fields due to the requirement of improved overall performance of artificial 

materials. Incorporating intricate geometry structure at multiple length scales provides 

highly promising techniques to improve the performance of constituent materials [39]. 

Some of the intricate design methodologies to improve mechanical properties such as 

stiffness and/or damping are summarized by [40-44]. Quantifying the material properties 

of composite materials is significant in several filed of sciences for example damage 

modeling [45], energy harvesting [46-50], vibration analysis systems [51-53], and wave 

field modeling [54, 55]. It has been found that combination of hard and soft phase 

material to design unit cell can induce multiple properties of a material system [56]. 

Estrin et. al. [57] have utilized the concept of topological interlocking structure which 

introduces an unusual property such as negative stiffness within a material without 

damaging or buckling stem. Thus, interlocking structure has been considered as a 

promising research field in material science. On the other hand, unit cells of a periodic 

structure are the building block of most of the artificially engineered materials. Periodic 

crystals [26] comprise of regular lattices of scattering unit cells. Among them, Phononic 

(PnCs) and photonic crystals (PCs) are periodic composite materials, widely studied for 

last few decades in many sectors of wave propagation. One of the prime findings of 

periodic metamaterials is Bragg scattering, which ultimately gives rise to acoustic 

bandgap [58-60]. Exploiting the bandgap phenomena, many novel wave-control 
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applications have been proposed [61-64], especially in electromagnetic and acoustic 

noise control [65], acoustic collimation [66] and acoustic imaging [32, 67]. Several 

acoustic wave tools such as equifrequency contour [68, 69], determination of effective 

properties, acoustic emission [70, 71], propagation of guided Lamb wave etc. have been 

successfully applied to analyze the wave propagation phenomenon. Lately, energy 

trapping and absorbing has been one of the application fields using acoustic bandgap [72-

76]. Energy can be confined inside the periodic media by inserting a defect into the lattice 

by altering any of the scattering elements, which helps the energy to get trapped inside 

[77-79]. Energy getting trapped inside the PnCs within the frequency bandgap yields a 

high-quality factor cavity, having dimensions of about half the wavelength. However, to 

achieve acoustic energy trapping, the periodicity of the phononic crystals need to be 

broken by inserting defect or irregularities within the matrix. This reduces the wave-

guiding capabilities of the crystals that minimizes the applicability of the metamaterial.  

In this chapter, we have proposed a combination of interlock architecture along 

with the concept of phononic crystal arrangement. micro-structure, yielding a phononic 

crystal, which is capable of trapping acoustic wave within the periodicity within bandgap 

frequency, without inserting any artificial defect. Trapping energy within periodic media 

keeping the crystals unchanged has never been reported before. We propose to 

numerically study the occurrence of acoustic trapping in an interlock structure comprised 

of two different materials. The originality of this study lies in the wave field distribution 

inside the resonators, having an excitation located in the far-field of the metamaterial. 

This study can be of interest in the field of seismic hazard evaluation from geophysical 

point of view, for complicated structures clustered together. 
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3.3 DESIGN CONSIDERATIONS AND BAND DIAGRAM 

Designing an interlock structure requires careful consideration of physical 

parameters and desired outcome. The motivation and design considerations of the 

proposed interlock structure are based on the near-isotropic nature of planar hexagonal 

geometry described by [80]. Moreover, the isotropic features of planar graphene were 

recently proved as a result of regular hexagonal geometry in its lattice organization.  

3.4 UNIT CELL GEOMETRY AND ITS MATERIALS  

The geometry of the interlock structure unit cell has two distinct entities – a 

triangular block and a circular gear block. The first building block of the unit cell is 

designed as triangular shaped having circular shaped vertices which eventually contribute 

to the formation of interlock when positioned into the second block. The second block is 

designed to hold six triangular shaped blocks. These two types of block keep a distance 

of 0.25 mm. A schematic diagram is shown in Figure 3.1a. The sides of the base hexagon 

are considered as the unit cell length ‘a’ and the length of each side of the isosceles 

triangle is a/2 located at the mid-point of each side of the hexagon. Finally, the diameter 

of the circular heads of the triangle is designed as a/8. While considering the constituent 

materials, emphasis was given on the commercial availability of the material and the ease 

of manufacturability. Therefore, polymetrhyl methacrylate (PMMA) is chosen as the 

stiffer material for both triangular and circular gear elements. In the design of unit cell, 

the space between these two elements are connected and make only one route. This space 

is filled up with locally available soft Silicone Rubber (SR). The properties of these two 

materials are listed in the following table. 
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                                            PMMA              Silicone Rubber 

Young’s Modulus     3 (GPa)              0.9942  (MPa) 

Poisson’s ratio           0.35                    0.47 

 Density                     1180 (kg/m3)      1600 (kg/m3) 

          Table 3.1. Material properties. 

 

 

 

 

 

3.5 BAND DIAGRAM AND FEATURE EXTRACTION 

To understand the physics behind the wave propagation phenomenon through 

phononic crystal arrangement, group velocities and the mode shapes at multiple 

eigenfrequencies are the initial requirement. Hence, the dispersion behavior of the 

proposed structure is obtained using finite element base commercial package COMSOL 

Multiphysics. Utilizing eigenfrequency study, by varying the wave vector in reciprocal 

space of a hexagonal lattice structure the band structure of the unit cell is obtained. In this 

analysis, Floquet periodicity is assumed at all boundaries of the hexagonal cell. The 

dispersion band structure shown in Figure 3.1c is numerically computed for KΓMK 

boundary of the first Brillouin zone of Figure 3.1b. Clearly, a large bandgap is located 

between ~7kHz to 8.5 kHz. In this study, the interested range of frequency is 0.5 kHz to 2 

kHz as the band diagram shows a linear dispersion in this region.  
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Figure 3.1: a) Geometry of the unit cell and materials used, b) Reduced Brillouin 
Zone, c) Band diagram of the proposed interlock structure. 

 

3.6 SIMULATION SETUP 

The objective of the simulation setup in this study is to demonstrate wave trapping 

and attenuation phenomenon. A total of three configuration geometries are designed by 

repeating the hexagonal lattice structure. First and second configurations have a guided 

wave displacement excitation at the left side of the crystal matrix. Both configurations 

have same height, however, the width of first configuration is double than the other. 

Third configuration has same height and width of the first configuration; however, a 

circular excitation source is placed at the center point by removing adjacent unit cells. All 

these configurations are surrounded by base PMMA material. To avoid boundary 

reflection, a 50 mm thick perfectly matched layer is assumed at all boundaries of all 

geometric configurations. Frequency domain analysis is performed using structural 

mechanics module of COMSOL Multiphysics for a frequency range of 500 Hz to 2 kHz.  
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Figure 3.2. Simulation configurations. Configuration 1: full 
width and height of PnCs, Configuration 2: half width and full 
height of PnCs, Configuration 3: full width and height with 
central excitation, Configuration 4: reduced width and height. 
Configuration 1, 2 and 4 have left side plane wave excitation.  

3.7 RESULTS AND DISCUSSION 

Wave trapping phenomenon: Displacement amplitudes at these frequencies are 

shown in Figure 3.2. Clearly, all these geometric configurations show increase of 

displacement amplitudes as the frequency increases to 1.35 kHz and then follows a 

decrement until 2kHz. Figure 3.2a shows displacement amplitudes of first configuration 
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where propagated wave has been trapped inside the phononic crystal arrangement. At 

these frequencies, the boundaries of the crystal matrix remain unperturbed and 

displacements of the unit cells are confined within the matrix.  

 

Figure 3.3: wave displacement amplitudes (a) first, (b) second 
and (c) third configurations at 750 Hz, 1350 Hz and 1950 Hz 
demonstrating wave trapping and attenuation phenomenon. 

To isolate the effect of matrix width, the width of the matrix geometry of second 

configuration is reduced by half of first configuration. It has been found that the wave 

transmission pattern follows the same behavior as the first configuration, confinement of 
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wave inside the matrix bounded by the matrix boundaries. The interphase between the 

phononic matrix and the base PMMA does not allow the wave to propagate outside of the 

matrix boundaries. To demonstrate further, third geometric configuration is utilized to 

excite wave inside the crystal matrix in 45º direction with MK. Clearly, as the frequency 

increases, the magnitude of the total solid displacement increases and form specific 

displacement pattern. However, irrespective of the wave displacement amplitudes pattern, 

the propagated waves are trapped and do not transmit through the matrix boundaries. The 

wave propagation phenomenon using the third geometric configuration also demonstrates 

that the change of excitation direction does not affect the wave trapping capability of the 

proposed structure.  

 

Figure 3.4: Transmissibility of (a) first, (b) second and (c) third configurations at 
right boundary and inside phononic crystal matrix. 

Wave attenuation phenomenon: Wave attenuation phenomenon is observed in this 

interlock structure which is a complementary effect of wave trapping behavior. As most 

of the incident wave is trapped inside the phononic crystal matrix, a sudden attenuation is 

observed at the interphase between the crystal matrix and the base PMMA. To 
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demonstrate this behavior, magnitude of the wave transmission is measured at the 

boundaries. Two lines are chosen, one at the right boundary and the other at 75% of the 

width inside the matrix.  A line integral of total displacement amplitude of the respective 

line is calculated which is termed as transmitting wave. Thereafter, the line integral of 

total displacement amplitude of the incident wave at the incident boundary is calculated 

and termed as incoming incident wave. Finally, the ratio of transmitting wave at one line 

to the incoming incident wave is calculated. These ratios are graphically shown in Figure 

3.3 corresponding to respective geometric configurations.  

It can be clearly seen from Figure 3.4 that the transmissibility at the boundaries of 

the matrix is much lower than that of matrix inside. This explains the trapping of wave 

energy inside the phononic crystal matrix and the attenuation of wave energy at the 

boundaries. This phenomenon has been demonstrated from 500 Hz to 2 kHz. As the 

frequency increases, the wave transmissibility pattern inside the PC and at the boundaiesy 

follows each other. Around 1.35 kHz the wave transmissibility is the highest compared to 

other frequencies which is in line with the displacement amplitude found in Figure 3.3.  

Analysis of mode shape in three principal direction in Figure 3.5 indicates that 

excitation of incident wave in ΓM direction yields a wave propagation in the direction of 

excitation. Notably, solid displacement around the center of the unit cell is higher than 

that of top and bottom region. This behavior of wave propagation forms excitation to 

neighboring other unit cells which then follow the mode shapes of KΓ and MK 

directions. Combination of these three mode shapes creates a rotational wave 

displacement inside the phononic crystal matrix which prevents wave to transmit out of 

the matrix boundary. 
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Figure 3.5: Mode shape with direction of energy propagation 

3.8 STRENGTH OPTIMIZATION OF INTERLOCK STRUCTURE 

Inspired by the fascinating mechanical and acoustic features, the proposed 

interlock architecture is studied further to increase mechanical strength by varying 

geometric parameters. An optimization scheme is adopted to analyze a characteristic 

Representative Volume Element (RVE) with the accurate boundary conditions. The 

constituent materials of the RVE are PMMA (E = 3 GPa, 𝜌 = 1180 kg/m3 and 𝜐 = 0.35) 

and Polyrethane (E = 45 MPa, 𝜌 = 1200 kg/m3 and 𝜐 = 0.35). In this optimization 

process, tie contact and friction contact are considered between PMMA and PU. The 

optimized geometry with tie contact shows ~10% improvement in yield strength as 

shown in the stress-strain diagram in Figure 3.6. 
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Figure 3.6: Stress-strain diagram of original and optimized interlock geometry [81]. 

 

Figure 3.7: Simulation results of Von-mises stress of RVE (a) onset yield, (b) 3.5% 
strain and (c) plastic strain [81]. 
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Balabadhruni [81] also demonstrated Von-mises stress comparison of the original 

and optimized geometry for onset of yield strain, 3.5% of yield strain and plastic strain. 

The results are as shown in Figure 3.7. The simulation results show that the higher 

stresses are developed across the top and bottom triangular PMMA structure through the 

central gear shaped PMMA structure. With introduction of friction and cohesive contact, 

a small drop in stiffness is observed, however, the yield strain practically remains same. 

As PU behaves like a gel, the value of friction coefficient doesn’t have any visible effect. 

Simulation results with friction coefficients are shown in Figure 3.8. 

 

Figure 3.8: Simulation of Von-mises stress with (a) Tie contact, (b) frictionless, (c) 
friction coefficient = 0.05, (d) friction coefficient = 0.1, (e) friction coefficient = 0.2 
and (f) friction coefficient = 0.5 [81]. 

Due to the improved mechanical strength of this optimized geometry, a further 

investigation is required to identify its acoustic properties. Therefore, this optimized 

interlock geometry will serve as the input geometry of the next chapter. 

3.9 CONCLUSION 

 In this article, an interlock architecture repeating structure has been proposed 

which was previously studied for improved mechanical properties such as combined 
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stiffness and damping. By determining the band structure using a hexagonal lattice 

arrangement, a band gap and a linear dispersion behavior are observed and analyzed for 

wave propagation phenomenon. In a frequency range of 0.5 kHz to 2 kHz, wave trapping 

and attenuation behaviors are demonstrated. As the frequency increases, the solid 

displacement amplitude inside three geometric configurations increases until 1.35 kHz 

and then decreases until 2 kHz. Additionally, wave transmissions at the boundaries of the 

matrix structure have been calculated and compared with the incident wave displacement. 

Transmission of wave shows a significant attenuation through the matrix boundaries. 

Finally, a research conducted at Michigan State University is mentioned. In this research 

an optimization scheme is demonstrated to determine the optimized geometric parameters 

that provides higher mechanical strength. This optimized geometry is an input for 

Chapter 4. 
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CHAPTER 4 

INVESTIGATION AND INTEGRATION OF OPTIMIZED INTERLOCK STRUCTURED 

METAMATERIAL AS AN AD-HOC METASTRUCTURE 

4.1 ABSTRACT 

Integration of metamaterial along with conventional NDE transducer is 

investigated and a design of ad-hoc metastructure is proposed in this chapter. The 

interlock metamaterial described in Chapter 3 is primarily adopted as the working 

metastructure. This metastructure is recently being investigated with optimized geometry 

for extracting improved mechanical properties such as high stiffness-high damping and 

high strength-high toughness. In this Chapter, the band structures, mode shapes and 

equifrequency contours at multiple frequencies are studied for this interlocking 

architecture to achieve wave focusing and generating Bessel Beam. The finite element 

simulations are performed for long distance wave propagation and the results are post-

processed to show the existence of Bessel Beam phenomenon at ~271 kHz. A concluding 

simulation is performed using ad-hoc interlocking metastructure to propagate wave 

through a combination of attenuating epoxy and carbon fiber reinforced polymer 

composite plate. Full penetration of wave inside thick composite plate is clearly 

observed. 
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4.2 INTRODUCTION OF OPTIMIZED INTERLOCK ARCHITECTURE AND BAND STRUCTURE 

A brief introduction of interlock structure has been provided in chapter 3 where 

the interlock structure was studied for wave trapping and attenuation. This structure has 

been studied further for increase mechanical strength by varying geometric parameters. 

An optimization scheme was adopted to analyze a characteristic Representative Volume 

Element (RVE) with the accurate boundary conditions. The constituent materials of the 

RVE were PMMA (E = 3 GPa, 𝜌 = 1180 kg/m3 and 𝜐 = 0.35) and Polyrethane (E = 45 

MPa, 𝜌 = 1200 kg/m3 and 𝜐 = 0.35). Since the optimized geometry has different 

geometric parameters compared to its original counterpart, the band structure and wave 

propagation behavior need to be studied considering it as a new geometry. A comparison 

of geometric parameters of the original and optimized unit cell is shown in Table 4.1 and 

the optimized geometry is shown in Figure 4.1.  

Table 4.1: Comparison of geometric parameters of original and optimized 
unit cell. 

Parameter Original Value 
(mm) 

Optimized 
Value(mm) 

Rg Radius of gear 0.49 0.495 

Lt Length of triangle Edge 0.5 0.5 

Rt Radius of Triangle head 
circle 

0.22 0.22 

h-offset (between Triangle 
vertex and head center) 

0.03 0.10 

R-fillet: Fillet radius, Same 
for all the corners 

0.02 0.02 

t (thickness of PU) 0.01 0.01 
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Figure 4.1: Geometric 
parameters of the optimized 
unit cell 

 

Figure 4.2: (a) Unit cell of interlock metastructure, (b) Material properties used for this 
metastructure and ((c) Frequency vs. k-space band structure. 

In determining the band structure of this metastructure, a new set of material 

properties is assumed. Instead of PMMA and polyurethane, in this research, PMMA and 
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silicone rubber is assumed. The reason for choosing silicone rubber in place of 

polyurethane is that it provides band structures that contain bang gap.  The dispersion 

behavior of the optimized structure is determined by considering the unit cell of the 

metastructure shown in Figure 4.2(a). While estimating the frequency vs k-space band 

structure of the unit cell, the 𝛤𝐾𝑀 boundary of the Brillouin zone is identified and shown 

in Figure 4.2(a) with dotted black line. It can be noted that the 𝛤𝑀 line makes 60° with 

𝛤𝐾. The unit cell is made up of two materials namely polymetrhyl methacrylate (PMMA) 

and Silicone Rubber. The material properties are shown in a table in Figure 4.2(b). Using 

eigenfrequency module of commercial FEM based package COMSOL Multiphysics, by 

varying the wave vector in reciprocal space of the rectangular unit cell, the frequency vs. 

k-space band structures are obtained and shown in Figure 4.2(c). It can be noted that the 

Floquet periodic boundary conditions are assumed along boundaries of the rectangular 

unit cell. Clearly, two band gap regions are visible which are in the frequency range of 

~200-240 kHz and ~310-350 kHz. 

4.3 VALIDATION OF SIMULATION PARAMETERS 

The objective of the simulation setup is to identify the wave propagation behavior 

which will help to focus incident energy and subsequently propagates waves through 

epoxy coated composite structure. The first step of this simulation setup is to identify the 

simulation parameters and validating its result. In this study, one of the frequencies, 

225kHz, from the first band gaps region is selected to explore the wave propagation 

behavior to indicate the validity of the simulation parameters. Before running the 

simulations, the unit cell is repeated in x and y directions and formed a repeating 
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structure or interlock phononic crystal (IPC) with an overall dimension as 8.66 mm X 4 

mm.  

 

Figure 4.3: Simulation parameters (left) and result at 225 kHz showing no wave 
propagation through the repeating structure and the base PMMA. 

This crystal is then placed in once end of the base PMMA which has a dimension 

of ~16 mm X 11 mm. A frequency domain simulation is performed at 225 kHz 

considering perfectly matched layer around the entire structure as an absorbing boundary 

condition. An excitor placed in PMMA is excited at 225kHz to generate plane wave at 

zero-degree orientation.   It can be clearly seen that no wave is propagated trough the IPC 

and the base PMMA structure. This simple simulation proves the validity of the 

simulation parameters and the IPC is then selected for rest of the study. It can be noted 

that the initial dimensions of the IPC are assumed with an underlying assumption to use it 

as an ad-hoc structure with conventional NDE transducers.  
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4.4 IDENTIFICATION OF MODE SHAPES FOR WAVE FOCUSING 

The interlock architecture shows promising band structure and mode shapes at 

varying frequencies. Therefore, multiple frequency ranges are investigated for wave 

propagation behavior so that the wave focusing phenomenon can be achieved. As the 

primary interest is to excite plane wave in 𝛤𝑋 direction, 𝛤𝑋 part of the dispersion curve is 

analyzed for mode shapes. After a rigorous investigations of mode shapes at multiple 

frequency ranges, two range of frequencies are selected for wave propagation analysis. 

These two ranges are 120 kHz to 135 kHz and 265 kHz to 275 kHz. 

 

Figure 4.4: Part of the Band structure of the unit metastructure ranges from 100 kHz 
to150 kHz. Zoomed in figure shows band 2, 3 and 4. Mode shapes numbers at the bottom 
correspond to the respective selected points on these bands.  

Between 120 kHz to 135 kHz, three bands fall in 𝛤𝑋 direction and these bands are 

band 2, 3 and 4. Figure 4.4 shows the band structure in this frequency range. The zoomed 

in image shows the pattern of these bands where two points from each band are selected 
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for mode shape identification. Points 1 and 2 are on band 2, points 3 and 4 are on band 3, 

and points 5 and 6 are on band 4. The mode shapes corresponding to the selected points 

are shown at the bottom row of Figure 4.4.  

At ~ 121 kHz, the mode shape of point 6 in 𝛤𝑋 direction dominates the wave 

propagation as only band 4 has the contribution to it. Similarly, at ~123 kHz, the mode 

shape of point 5 will dominate the wave propagation behavior. On the other hand, at 

~125 kHz and ~130 kHz, the mode shape of band 3 and band 4 will dominate the wave 

propagation. However, as band 3 has lower slope compared to band 2, the mode shapes 

of band 3 will dominate the wave propagation as explained in Chapter 2. An explanation 

of wave propagation direction, discussed in next paragraphs, is derived using 

equifrequency contour at ~121 kHz and ~130 kHz. 

Investigation of wave propagation direction using equifrequency contour 

Equi-frequency or iso-frequency contour is supplementary in analyzing behaviors 

of photonic crystals, which is the intersection of a constant frequency ω-plane to a 

dispersion surface [82, 83]. However, this concept can be utilized in phononic crystals as 

well. Construction of an equifrequency contour requires eigen frequency solution of k-

space in all possible directions. After determining the solutions for a range of frequencies 

which includes all bands of the dispersion curve within the frequency range, equi-

frequency contour can be constructed where each contour would represent a single 

frequency. Figure 4.5 shows the wave propagation behavior using equi-frequency line 

ranging from 120 kHz to 122 kHz. It has been established that group velocity at a point 

on the equifrequency line coincides with the direction of the normal to the equifrequency 
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surface and the group velocity points towards the increase of frequency. Since PMMA is 

considered as an isotropic material, its equi-frequency contour can be represented by 

circular lines. In Figure 4.5(a), the plane wave is excited from the PMMA and impinges 

on PC region. After propagating through the PC, the wave again propagates through the 

PMMA. Figure 4.5(b) shows the Equifrequency contour of PMMA. When a plane wave 

is excited from base PMMA in 𝛤𝑋 direction, it impinges on the PC and propagates 

omnidirectionally. If the wave passes inside the PC at an angle 𝜃, the resulting direction 

of wave inside the PC is shown in firm red arrows.  

 

Figure 4.5: Wave propagation behavior using equifrequency contour of interlock 
phononic crystals and base PMMA.  

It can be observed that at 121 kHz, each of the three bands has contribution in 

wave propagation. Therefore, each arrow corresponds to each band. After propagating 
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through the PC, wave come out of the PC and impinges on PMMA which is shown in 

Figure 4.5(d). The arrows in Figure 4.5(d) shows that the wave propagation has both 

converging and diverging behavior. This behavior is expected for wave focusing 

phenomenon. During investigation of equifrequency contours from 120kHz to 135 kHz, 

this converging and diverging phenomenon is evident until ~130 kHz. Beyond ~130 kHz, 

this phenomenon disappears. Therefore, a frequency domain study is required to 

investigate wave propagation behavior in a range of ~120kHz to ~130 kHz. 

4.5 FREQUENCY DOMAIN ANALYSIS OF WAVE PROPAGATION 

At this stage, using COMSOL Multiphysics, a frequency domain analysis is 

performed from 120 kHz to 130 kHz. The objective of this simulation is to determine and 

validate the wave propagation behavior as predicted from equifrequency analysis. The 

simulation results are shown in Figure 4.6. In these simulations, Figure 4.6(c) to 4.6(e), 

displacement amplitudes inside the PMMA geometry with PC are shown for ~121 kHz, 

~123 kHz and ~130 kHz respectively. It can be observed that in each frequency, the 

propagating waves bifurcates as they enter into the PC, and clearly two beams of wave 

are observed at the interphase of right boundary of the PC and the base PMMA. This 

bifurcation phenomenon of wave is explained in previous paragraphs with the equi-

frequency analysis. It can be noted that a negative refraction is observed as the wave 

came out of the PC to the base PMMA and as the frequency increases the negative 

refraction angle reduces. Thus, by increasing the frequency, the focal distance can be 

increased. Figure 4.6(b) shows the zoomed in image of PC where the mode shapes of the 

unit metastructures are observed. It can be seen that the displacement amplitudes inside 

the PC are very similar to the mode shape found for band 4 at point 6 which corresponds 
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to ~121 kHz. Figure 4.6(a) shows the mode shape of point 6 on band 4 to compare them 

to the displacement amplitudes inside the PC at ~121 kHz.  

 

Figure 4.6: Simulation results of frequency domain analysis from 120 kHz to 130 kHz. 
(a) Mode shape at point 6 on band 4, (b) Zoomed in image of PC region at ~121 kHz, 
(c) – (d) show displacement amplitude at ~121 kHz, ~123 kHz and ~130 kHz. 

From Figure 4.6(b), it is understandable that the wave energy can be focused at a 

distance from PC-PMMA interphase at ~121 kHz. To bolster this claim of wave 

propagation behavior, simulation results at ~123 kHz and ~130 kHz are also presented in 

Figure 4.6(d) and (e). The mode shape and wave propagation direction are also explored 

at ~130 kHz. The results are shown in Figure 4.7. Similar to the simulation results at 

~121 kHz, at ~130 kHz, the wave focal point shifts rightward as seen in Figure 4.7(e). 

Figure 4.7(b) shows the zoomed in image of the PC at ~130 kHz and the mode shape 

found inside the PC is similar to the mode shape found at point 3 on band 3 which is 

shown in Figure 4.7(a). It can be seen that as the frequency increases, the intensity of 

displacement amplitude increases and at ~130 kHz, the displacement amplitude is larger 

compared to other two frequencies. 
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Figure 4.7:Simulation results of frequency domain analysis from 120 kHz to 130 kHz. 
(a) Mode shape at point 6 on band 4, (b) Zoomed in image of PC region at ~130 kHz, 
(c) – (d) show displacement amplitude at ~121 kHz, ~123 kHz and ~130 kHz. 

4.6 WAVE FOCUSING INSIDE A COMPOSITE STRUCTURE 

The understanding of wave focusing can be utilized to focus wave energy inside a 

Carbon Fiber Reinforced Plastic (CFRP) composite material which is one of the primary 

objectives of this research. Therefore, a geometric configuration is designed utilizing 

interlock metastructure as a tool to focus wave energy. The geometric design is described 

in Figure 4.8. In these simulation configurations, a perfectly matched layer is assumed all 

around the geometry to create absorbing boundary conditions which is shown in Figure 

4.8(a). The PC along with PMMA is placed on a 100 mm X 10 mm CFRP composite. 

The young’s modulus and Poisson’s ratio this CFRP composite are considered as E1 = 

143.8 GPa, E2 = 13.3 GPa and 𝜐 = 0.3. The configurations are differed from each other 

by the distance between the PC and the CFRP composite which is filled by base PMMA. 

The value of this distance in Figure 4.8(b), (c) and (d) are 2 mm, 4 mm and 8 mm 
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respectively. In each case, the width of the PC with PMMA is considered as 10 mm. All 

simulations are performed at ~130 kHz. 

 

Figure 4.8: Simulation configurations for wave focusing. (a) Shows the location of 
perfectly matched layers, (b) to (d) indicates the varying distance starting from 2 mm 
to 8 mm. 

The simulation results are shown in Figure 4.9 and 4.10. Wave propagation 

intensity is calculated with the help of strain energy density function along horizontal and 
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vertical lines shown in the figures. Since strain energy is the energy stored by a system 

undergoing deformation, it can be expressed for an elastic material as  

𝑈 =  
ଵ

ଶ
 𝑉𝐸𝜖ଶ where, V = volume, E = Young’s modulus and 𝜖 = strain. 

In these simulations, using effective Young’s modulus and strain at each point, 

the elastic strain energy density (ESED) is calculated for each of the configurations. In 

Figure 4.9, three horizontal lines are considered to calculate the ESED. Line H3 is 

considered at the bottom of the CFRP composite to identify whether the penetration of 

wave can reach to the bottom. It can be observed from the normalized ESED for each line 

that, at 4 mm distance between PC and the CFRP composite, ESED is highest at the 

bottom surface of the CFRP composite. 

 

Figure 4.9: Simulation results at ~130 kHz for varying distance between PC and CFRP 
composite. Corresponding strain energy densities are shown along horizontal lines H1, 
H2 and H3. With 4mm distance between PC and CFRP composite, higher strain 
energy density is observed at the bottom surface of CFRP composite. 
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Similarly, the ESED is plotted for each of the vertical lines shown in Figure 4.10. 

From these plots, it is evident that at 4 mm distance between PC and the CFRP 

composite, the ESED is highest at ~7 mm distance from bottom of the CFRP composite. 

It indicates that the wave energy is focused at ~3 mm from the top surface of the CFRP 

composite when the distance between PC and CFRP composite is 4 mm. Therefore, ~130 

kHz, this interlock structure can be utilized for wave focusing in CFRP composite 

materials.  

 

Figure 4.10: Simulation results at ~130 kHz for varying distance between PC and CFRP 
composite. Corresponding strain energy densities are shown along the vertical lines V1, 
V2 and V3. At 4mm distance between PC and CFRP composite, higher strain energy 
density is observed inside the CFRP composite compared to other two distances. 

4.7 IDENTIFICATION OF MODE SHAPE FOR BESSEL BEAM GENERATION 

A Bessel beam is a wave whose amplitude is described by a Bessel function of the 

first kind [84, 85]. A true Bessel beam is non-diffractive. This means that as it 

propagates, it does not diffract and spread out. It has been established that the non-
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diffracting [86] Bessel beam can be realized by applying two plane beams with opposite 

propagating angles, and the overlapping region is the Bessel formation zone [87, 88]. 

Bessel beam has been realized successfully in many photonic and imaging applications 

[88-91]. Therefore, it is intriguing to generate and utilize Bessel Beam in acoustic 

applications. The objective of generating BB is to remarkable utilize it to propagate wave 

through thick CFRP composite. Therefore, a rigorous investigation is performed to 

identify mode shape using interlock metastructure that can essentially generate BB. The 

mode shapes in a frequency range of 265 kHz to 272 kHz show promising result in 

respect to generate BB. Figure 4.11 shows the dispersion curve of the metastructure and 

mode shapes of four selected points on band 12 and 13. Points 1 and 2 are located on 

band 12 and points 3 and 4 are located on band 12. The mode shape of point 1 and point 

3 are determined at ~271 kHz whereas the mode shape of point 4 is determined at ~267 

kHz.  

 

Figure 4.11: Frequency vs. k-space dispersion curve for a frequency range of 250 kHz 
to 290 kHz. Mode shapes of selected points on band 12 and 13.  
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By the observation of mode shapes at these two frequencies, the straight crested 

mode shapes are available at band 13, whereas a circular shaped mode is found at band 

12. Therefore, it is logical to estimate a wave propagation which would have a circular 

crested propagation at 267.5 kHz, and a straight crested wave propagation at 271.2 kHz. 

However, at 271.2 kHz, the slope of the band 13 is lower than that of band 12, and this 

would contribute to a domination of straight crested wave propagation while the circular 

pattern of the mode shape would contribute to a oscillatory wave propagation. With this 

assumption, a mixture of straight crested wave to the circular wave pattern would provide 

us a Bessel beam of first kind is hypothesized herein at frequency 271.2 kHz. 

4.8 FREQUENCY DOMAIN SIMULATION AT ~267.5 KHZ AND ~271 KHZ 

Using the simulation configuration discussed above, a frequency domain 

simulation is performed at ~267.5 kHz and ~271 kHz. The simulation results are shown 

in Figure 4.12. As predicted converging-diverging wave propagation is found at ~267.5 

kHz as shown in Figure 4.12(a). It can be noted that the displacement amplitudes in base 

PMMA do not spread out as the wave propagates towards right side which is an 

indication of Bessel beam behavior. Therefore, the length of the base PMMA is doubled 

and found consistent long-distance propagation of wave. This result is shown in Figure 

4.12(b). The next set of simulations are performed at ~271 kHz with normal and doubled 

length base PMMA. As predicted the influence of straight crest mode shape is found 

effective and the simulation results show generation of BB in both configurations. These 

are evident from Figure 4.12 (c) and (d).  
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Figure 4.12: (a) and (b): Simulation results at ~267.5 kHz. (c) and (d): simulation results 
at ~271 kHz. 

At this stage, an analysis is performed to measure the ESED at varying distance 

when the wave come out of the PC. Therefore, two vertical lines and two horizontal lines 

are chosen to calculate the ESED at ~271 kHz.  

 

Figure 4.13: Generation of Bessel Beam at ~271 kHz. Elastic strain energy density 
along two horizontal and two vertical lines are shown at right and bottom of simulation 
result. 



www.manaraa.com

63 

The results are shown in Figure 4.13. The ESED along two vertical lines, Line 1 

and Line 2, are shown right side of this Figure. From this estimation, it is evident that the 

ESED at ~12 mm and at ~41 mm is almost same along these vertical lines. Moreover, 

ESED along two horizontal lines are shown at the bottom of Figure 4.13 and shows 

consistent long-distance propagation of wave with minimum attenuation. Thus, formation 

of BB is evident at ~271 kHz which can be effectively utilized to propagate ultrasonic 

wave through CFRP composite materials.  

 

Figure 4.14: Geometric configurations to propagate Bessel Beam using ad-hoc 
metastructure. 

4.9 SIMULATION OF AD-HOC METASTRUCTURE WITH CFRP COMPOSITE 

Three simulation configurations are designed to generate BB using ad-hoc 

metastructure. These configurations are shown in Figure 4.14. An image of NDE 

transducer is added to each configuration to resemble its position as plane wave exciter. 

In configuration (a), the distance between the metastructure and the 10 mm thick CFRP 
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composite is filled with 12 mm PMMA. In configuration (b), this distance is reduced to 2 

mm and filled with PMMA. The last configuration has the same distance between 

metastructure and CFRP composite, however, it is filled with industry standard Epoxy 

(Hysol 9394). The material properties used for this Epoxy are as follows: Young’s 

modulus, E = 4.23 GPa, Density, 𝜌 = 1360 kg/m3 and poisson’s ratio, 𝜈 = 0.3. With these 

geometric configurations, simulations are performed at ~271 kHz and BB are generated. 

The simulation results are shown in Figure 4.15. Bessel beams are generated in each 

configurations and full penetration wave inside the thick composite is observed. The 

result of configuration (c) shows that even the presence of Hysol 9394 ultrasonic wave is 

capable to propagate through the CFRP composite. 

 

Figure 4.15: Simulation results at ~271 kHz where Bessel Beam are generated in three 
geometric configurations. (a) with 12 mm PMMA, (b) with 2 mm PMMA and (c) with 
2 mm Epoxy (Hysol 9394).  
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4.10 CONCLUSION 

In this chapter, an optimized design of interlock architecture is introduced and 

integrated with conventional NDE transducer as an ad-hoc metastructure. As an initial 

step, the band structure is determined and investigated for mode shapes for possible wave 

focusing phenomenon. Based on the mode shape analysis, a range of frequency is 

identified at which wave propagation phenomenon is calculated. Within this frequency 

range, three frequencies, ~120 kHz, ~ 123 kHz and ~130 kHz are identified, and 

frequency domain analysis is performed. These simulations effectively show wave 

focusing inside 10 mm thick composite plate. Further investigation of modal analysis 

yields mode shapes that have the capability of generating Bessel Beam. These mode 

shapes are determined at ~267.5 kHz and 271 kHz, and frequency domain analysis are 

performed. After post-processing, the simulation result it is evident that the wave 

propagation at ~271 kHz possesses elastic strain energy density which has negligible 

attenuation as it propagates through a long distance. 

 



www.manaraa.com

66 

CHAPTER 5  

ULTRASONIC ACOUSTIC WAVE FOCUSING IN LAMINATED COMPOSITE 

MATERIALS USING SPECTRAL ELEMENT METHOD 

5.1 BACKGROUND 

The advantages of Non-Destructive Evaluation (NDE) in determining material 

state awareness of operational structural components are the key motivating factors 

leading to develop numerous computational tools. As human knowledge on wave 

propagation behavior in solids and fluids evolved day by day, the role of NDE based 

computational tools became inevitable so far. Numerous researchers around the world 

developed multiple mathematical models on wave propagation and implemented them to 

analyze structural problems [91-95]. Rapid development of computer architecture and its 

computational power gave scientists and researchers an immense opportunity to boost up 

NDE computational tools to the academy and industry to design high efficiency structural 

elements.  

Damage initiation and growth in structural elements is a very significant problem 

since in most cases it leads to catastrophic accidents. In case of structural elements made 

from composite materials, matrix cracking, delamination and fiber breaking are 

especially dangerous modes of failure. That is why in order to improve safety and 
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reliability of such structures, periodic inspections are necessary. For this reason, a variety 

of online structural health monitoring systems and strategies have been developed [96, 

97].  

The objective of this chapter is to focus acoustic ultrasonic energy with the help 

of Spectral Element Method. First, a comparative study on Fininte Element Method 

(FEM) and Spectral Element Method (SEM) has been presented. Then a mathematical 

formulation to solve the wave propagation problem in laminated composite materials has 

been derived, specifically to simulate wave interaction with composite structure using 

pulese-echo (PE) ultrasonic transducer (UT). The PE ultasonic signals have many 

features that are not known because actual intearaction of the wave with different ply and 

ply thickness is poorly understood. The anisotropy of composite material plays a critical 

role in affecting the signal pattern which is not apparent in isotropic materials. Many 

Finite Element Modeling (FEM) approaches have been propsoed to simulate the wave 

interactions without any satisfactory results at high frequencies in the Mega Hertx (MHz) 

range. Therefore, in this work, SEM is introduced and mathematiocal details are 

presented to solve a wave propagation problem numerically. 

5.2 WHAT IS SEM? 

The spectral Element Method is relatively a new addition to the history of 

computational techniques. This technique basically combines the advantages of two 

different numerical techniques which is spectral methods and finite element methods. In 

structural analysis, these two techniques had been utilized widely for their accuracy and 

ease of use. Spectral element methods are high-order weighted-residual techniques for 
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partial differential equations that exploit both the common foundations and competitive 

advantages of h-type finite element methods and p-type spectral techniques [98-100]. 

Therefore, in short, it can be said that, the spectral element method is a high-order finite 

element technique that combines the geometric flexibility of finite elements with the high 

accuracy of spectral methods.  

As proposed by Patera in 1984 [101], The SEM is capable to investigate material 

state damage with the propagation of elastic waves in structures of varying geometries. 

The basic idea and working principle of SEM is very similar to FEM with some 

exception in approximating specific functions. The very first difference is the location of 

interpolation nodes. In SEM, elemental interpolation nodes are chosen at points 

corresponding to the zeros of an appropriate family of orthogonal polynomials such as 

Lobatto or Legendre or Chebyshev polynomials [102, 103]. A set of local shape functions 

consisting of Lagrange polynomials are built and used which are spanned on these points. 

Due to this approximation and the use of Gauss-Lobatto - Legendre integration rule, a 

diagonal form of the mass matrix can be obtained. Adopting these techniques, the 

computational or numerical cost is much less expensive than in the case of classic finite 

element approach. The second difference with FE approach is the degree of 

approximating polynomials. Whereas in FE linear or quadratic shape functions are widely 

used in commercial applications, in SEM the use of higher order polynomials is a 

common practice. Introduction of diagonal mass matrix and higher order polynomial 

decreases the numerical errors faster than any power of 1/p where the p is the order of the 

applied polynomial. Problems often approached by the use of SEM are associated with 

the phenomena such as wave propagation, interference and diffraction in continuous 
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media of various types (solids, liquids and gasses), gas or liquid flows, diffusion and 

many others [104, 105]. 

5.3 A COMPARATIVE ANALYSIS ON FEM VS. SEM 

As a popular and widely used method, the FEM is employed to solve complex 

problems from multi-disciplinary physical sciences that can be expressed by partial 

differential equations or integral equations. Examples of such problems usually can be 

found in fluid mechanics, solid mechanics, thermodynamics, electro and magneto 

statistics and dynamics and many others. The working principle of FEM involves the 

discretization of the analyzed area into a finite number of smaller subdivisions normally 

termed as finite elements, within which solutions are determined by approximating 

suitable polynomials over evenly spaced nodal points [106, 107]. As the number of 

evenly spaced interpolation points or nodes increases, a so-called oscillation near the 

ends of the interpolation domain arises which can be described as Runge’s phenomenon. 

Unless a low-order polynomial approximation is employed, an even distribution of 

interpolation nodes is detrimental to the accuracy of the interpolation. This reason leads 

to approximate linear or quadratic shape functions to be assumed in FEM.  To 

demonstrate potential effect of the interpolation, let’s approximate the Runge function as  

𝑓(𝜉) =  
1

1 + 25𝜉ଶ
 

in a normalized interval [-1, 1] with 6th order interpolating polynomial that passes 

through 6+1 evenly distributed data points. As the number of data points and thus the 

polynomial order increases, the interpolation worsens near the two ends of the 
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interpolation domain which is referred as Runge effect. This is an obvious effect as the 

interpolated polynomial is reconstructed from the evenly spaced data values that 

contributes equal attention to the middle and to the two ends of the interpolation domain,  

 

Figure 5.1: Plot of (a) 7-node interpolation functions corresponding to polynomial 
order 6 with evenly spaced nodal points, (b) 7-node interpolation functions 
corresponding to polynomial order 6 with nodal points at the roots of Gauss-Lobatto-
Legendre polynomials. 

insufficient information is provided beyond the boundaries of the interpolation domain. 

As a result, a much-deviated approximation is observed near the element boundaries as 

described in Figure 5.1(a). Therefore, as the polynomial order increases, results obtained 

from evenly spaced element interpolation nodes may significantly become sensitive to 

the numerical error of even fail, which is the case for FEM. In order to avoid the potential 

failure or incorrect assessment, a judicial placement of the interpolation nodes over each 

element to positions corresponding to the zeros of orthogonal polynomials can be 

utilized. In Figure 5.1(b), the nodes are located at the zeros of the Gauss-Lobatto-
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Legendre polynomial. As the nodes are not evenly spaced, the Runge’s effect is much 

lower at the two ends of the normalized element interval. 

5.4 TYPES OF SEM 

The SEM method can be essentially of two types. Type I - SEM is a Frequency 

domain spectral element method [108] where the problem is solved at specific individual 

frequencies, we call FSEM. A loading function is essentially transformed (FFT) in to the 

frequency domain, and the problem of interest is solved in all discrete frequencies at 

specific frequency interval governed by the sampling rate of time in the Fourier domain. 

Next the response function from the problem of interest at all the frequencies are 

collected, and an inverse Fourier transform (IFFT) is conducted to retrieve the time 

domain signal. In Type I - SEM the wave functions obtained from the solution of the 

wave propagation equation are used as the element shape functions. Whereas, Type II 

SEM is a transient or direct time domain simulation method where the problem is solved 

in time domain utilizing the specific polynomial functions to express the quantity of 

interest inside the element and the nodal points are distributed at the zero points of that 

polynomial [109-112]. We call Type II – SEM a TSEM. Hence, the TSEM is essentially 

a type of FEM with specific element types that are designed based on the spectral wave 

mode shapes.   

5.5 PROBLEM STATEMENT 

An attenuative surface is required to simulate wave propagation and the solution 

of particle displacements need to be identified to prove the accuracy of the SEM. For this 

reason, a simple structural component made of 24-layer laminated composite plate has 
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been chosen to solve for wave propagation. Following Figure shows 24-ply laminated 

composite plate with fiber orientation of 24 layers are [ 0, 45, -45, 90, 90, -45, 45, 0]3.  

 

Figure 5.2: (Left) 24-ply composite structure. (right) 8-ply symmetric laminated part 
has been illustrated for simulation and discretization purpose. 

For the implementation purpose, the symmetric 8-ply laminated part has been taken into 

consideration initially. A spectral discretization is performed to demonstrate its 

applicability. However, a mathematical formulation is required to proceed further. 

5.6 MATHEMATICAL FORMULATION IN 3D 

In the case of wave propagation in 3D solids and structural mechanics problems, 

the fundamental objective is to find out an approximate solution as a form of 

displacement amplitudes at each material point. In both FEM and SEM, the material body 

is discretized into a finite number of elements. The profile of the displacements is 

assumed in a form to obtain approximate element displacements in the form of element 

equations. The equations obtained for each element are then assembled together with 
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adjoining elements to form the global finite or spectral element equation for the whole 

material domain. Equations thus created for the global material domain can be solved for 

the entire displacement field as a system of simultaneous linear algebraic equations.  

The problem of interest herein is a wave propagation problem in laminated 

composite plate and the primary unknown variables in the governing differential equation 

are the displacement functions in three directions in the Cartesian coordinate system. The 

secondary variables subsequently are the strain and stress variables. The strong form of 

the problem equation requires a strong continuity on the unknown variables. Since 

obtaining the exact solution for a strong form of the system equation is usually difficult 

for this wave propagation problem, a weak form of the problem equation needs to be 

derived which is suitable for obtaining an approximate solution. The weak form can be 

derived using variational principles. For the type of our problem, following two forms of 

the variational principles are discussed: 

A. Energy principles such as Hamiltonian principles: this can be categorized as a 

special form of the variational principle which is particularly suited for problems 

of the mechanics of solids and structures. While the principle of minimum 

potential energy is limited to static equilibrium of solids, Hamilton’s principle is a 

generalization of the principle of virtual displacements to dynamics of solids. 

B. Weighted residual methods such as Ritz method and Galerkin method: This is a 

more general mathematical tool applicable, in principle, for solving many kinds of 

partial differential equations. 
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5.7 APPLICATION OF HAMILTONIAN PRINCIPLE 

Application of Hamilton’s principle conveniently guarantee a combination of 

assumed set of displacements to produce the almost accurate solution for the system that 

is governed by the strong form of the system equations. The set of assumed 

displacements must satisfy the following three admissible displacement conditions: 

1. The compatibility equations 

2. The essential or the kinematic boundary conditions 

3. The conditions at initial and final time 

The equation of motion of the system discretized by spectral elements can be 

derived directly from the Lagrange equation. According to the Hamiltonian principle, the 

governing equation of a system can be written as  

ௗ
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ቅ −  ቄ
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where, the 𝐿 is the Lagrangian functional of a dynamic system which is the difference 

between the kinetic energy (𝑇) and potential energy (𝛱௣), i.e., 𝐿 = 𝑇 − 𝛱௣. Considering a 

most generic case where in NDE of a laminated composite plate, the plate will be 

subjected to the body and surface forces per unit volume. Hence, the kinetic energy (𝑇), 

potential energy (𝛱௣) and the dissipation of energy (𝑅) in the system can be written as  
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Where 𝜌 and 𝜇 represent the density and damping coefficient respectively. Also, 

𝛙ஐ and 𝛙୻ denotes the volume and surface force vectors respectively. These force 

vectors are function of time. As discretized by the spectral elements, the unknown 

displacement function inside the element can be approximated by the shape functions and 

the nodal displacements, 𝑈௜
௨, 𝑈௜

௩, 𝑈௜
௪, in the x, y and z mutually perpendicular direction 

at the i-th node point of the element. Hence, the displacements at any point (x,y,z) inside 

the element is the superposition of the shape function multiplied with the nodal 

displacements. The shape functions can be visualized as the basis functions and the nodal 

displacements as the contribution factor. 

ቐ

𝑢(𝑥, 𝑦, 𝑧) =  ∑ 𝑁௜(𝑥, 𝑦, 𝑧)𝑈௜
௨௠

௜ୀଵ

𝑣(𝑥, 𝑦, 𝑧) =  ∑ 𝑁௜(𝑥, 𝑦, 𝑧)𝑈௜
௩ ௠

௜ୀଵ

𝑤(𝑥, 𝑦, 𝑧) =  ∑ 𝑁௜(𝑥, 𝑦, 𝑧)𝑈௜
௪௠

௜ୀଵ

 ................................................................................................. (3) 

In equation (3) the shape function used has m nodal points and thus there are m 

shape functions. As the shape functions are not the function of time, the time derivatives 

of the displacement functions, i.e. the velocity and accelerations will have same shape 

functions. The relationships could be written in the following simpler form if the 

 𝐔௘ = [𝐮, 𝐯, 𝐰]் , 𝐔௘
௜ = [𝑈ଵ

௨, 𝑈ଵ
௩, 𝑈ଵ

௪, … . 𝑈௠
௨ , 𝑈௠

௩ , 𝑈௠
௪]்    

𝐔௘ = 𝐍௘𝐔௜
௘  

𝐔̇௘ = 𝐍௘𝐔̇௜
௘   ......................................................................................................... (4)       

𝐔̈௘ = 𝐍௘𝐔̈௜
௘  

where, 𝐍௘ is the shape function matrix. The superscript 𝑒 in the equation (4) signifies the 

relation is valid in one element with designation 𝑒. Similarly, for that same element the 

strain (𝜀௘) and stress (𝜎௘) equations can be written as follows. The strain function inside 
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the element 𝑒 will be divided in to two parts, linear and nonlinear. Considering both the 

linear and nonlinear part of the strain component the total strain inside the element will 

be  

 𝛆௘ = 𝚪௟𝐔
௘ + 𝚪௡𝐔௘  .............................................................................................. (5) 

where,  

𝚪௟ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

డ

డ௫

0
0

0
డ

డ௬

0

0
0
డ

డ௭
డ

డ௬

0
డ

డ௭

డ

డ௫
డ

డ௭

0

0
డ

డ௬

డ

డ௫⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,    𝚪௡ = 𝚪௡(𝑈) =
ଵ

ଶ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

(𝜕௫𝑼)்𝜕௫

(𝜕௬𝑼)்𝜕௬

(𝜕௭𝑼)்𝜕௭

(𝜕௫𝑼)்𝜕௬ + (𝜕௬𝑼)்𝜕௫

(𝜕௬𝑼)்𝜕௭ + (𝜕௭𝑼)்𝜕௬

(𝜕௭𝑼)்𝜕௫ + (𝜕௫𝑼)்𝜕௭ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                   

Substituting the equation (4) in the equation (5) we get  

𝛆௘ = 𝚪௟𝐍
௘𝑼௜

௘ + 𝚪௡𝐍௘𝑼௜
௘ = 𝐁௟

௘𝑼௜
௘ + 𝐁௡

௘ 𝑼௜
௘ = 𝐁௘𝑼௜

௘ ..................................................(6)  

The constitutive equation gives the relationship between the stress and strain in 

the material of a solid which is govern by the Hooke’s law. Therefore, the stress equation 

for an element will be  

𝛔௘ = ℂ𝒆𝛆௘ = ℂ𝒆𝐁௘𝐔௜
௘  ......................................................................................... (7) 

where, ℂ௘ is the representative constitutive property matrix of the element. Hence, it is 

apparent that it is not necessary to have same material properties for every element in the 

model. At every ply we could provide different material properties based on the fiber 

orientation. Similarly, degraded or damaged material properties could also be used for 

certain element to simulate the effect of material degradation on the ultrasonic wave 

signal obtained from the NDE of laminated composite material.  
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Once we have defined the stresses and strains in terms of displacements, putting 

(4) through (7) in (2), we get, 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑇௘ =

1

2
(𝐔̇௡

௘ )் ൥ න 𝜌(𝐍௘)்

௏೐

𝐍௘𝑑𝑉௘൩ 𝐔̇௡
௘

𝛱௣
௘ =

1

2
(𝐔௡

௘ )் ൥ න(𝐁௟
௘ + 𝐁௡

௘ )்𝐂௘(𝐁௟
௘ + 𝐁௡

௘ )்𝑑𝑉௘

௏೐

൩ 𝐔௡ 
௘ −  (𝐔௡

௘ )் ൥ න(𝐍௘)்𝛙ஐ𝑑𝑉௘ + න(𝐍௘)்𝛙୻𝑑𝐴௘ + 𝐟௖
௘

஺೐௏೐

൩

𝑅௘ =
1

2
(𝐔̇௡

௘ )் ൥ න 𝜇(𝐍௘)்

௏೐

𝐍௘𝑑𝑉௘൩ 𝐔̇௡
௘

   

............................................................................................................................... (8) 

where, 𝐟௖
௘ in the potential energy term is the vector of point forces at the nodal points, if 

any. This force vector is also a function of time. The integral terms in (8), represents the 

characteristics matrices and vectors of spectral elements. Extracting the charecteristics 

mass matrix (M), stiffness matrix (K), damping matrix (D) and the force vectors (surface 

loads (𝐟஺) and body force or volume force (𝐟௏)) from the equation (8), we could write  

⎩
⎪⎪
⎨

⎪⎪
⎧

𝐌௘ =  ∫ 𝜌(𝐍௘)்
௏೐ 𝐍௘𝑑𝑉௘

𝐊௘ =  ∫ (𝐁௟
௘ + 𝐁௡

௘ )்ℂ௘(𝐁௟
௘ + 𝐁௡

௘ )்𝑑𝑉௘
௏೐

𝐃௘ = ∫ 𝜇(𝐍௘)்
௏೐ 𝐍௘𝑑𝑉௘  

𝐟ஐ
௘ = ∫ (𝐍௘)்𝛙ஐ𝑑𝑉௘

௏೐

𝐟୻
௘ = ∫ (𝐍௘)்𝛙୻𝑑𝐴௘

஺೐

 .......................................................... (9) 

With the matrices in equation (9) we can write the kinetic energy, potential 

energy, and dissipation functions as follows. Please note that all the equations are written 

for a spectral element.   
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⎩
⎪
⎨

⎪
⎧ 𝑇௘ =

ଵ

ଶ
(𝐔̇௡

௘ )்𝐌௘𝐔̇௡
௘

𝛱௣
௘ =

ଵ

ଶ
(𝐔௡

௘ )்𝐊௘𝐔௡
௘ − (𝐔௡

௘ )்[𝐟ஐ
௘ + 𝐟୻

௘ + 𝐟௖
௘]

𝑅௘ =
ଵ

ଶ
(𝐔̇௡

௘ )்ℂ௘𝐔̇௡
௘

  ................................................... (10) 

Now substituting the equation (10) into the equation (1), the governing dynamic 

equation for a spectral element can be written as   

𝐌௘𝐪̈௡
௘ + 𝐃௘𝐪̇௡

௘ + 𝐊௘𝐪௡
௘ = 𝐟௧௢௧௔௟

௘ (𝑡)  ................................................................... (11)  

where,  𝐟௧௢௧௔௟
௘ (𝑡) =  𝐟ஐ

௘ (𝑡) + 𝐟୻
௘(𝑡) + 𝐟௖

௘(𝑡)  

After assembling the element terms for the global problem, we get the gobal governing 

equation interms of discretized problem with spectral elements.  

𝐌𝐪̈௡ + 𝐃𝐪̇௡ + 𝐊𝐪௡ = 𝐟௧௢௧௔௟(𝑡) ......................................................................... (12) 

The global mass matrix, damping matrix, stiffness matrix, the global 

displacement, global velocity and global acceleration functions, and the force functions in 

equation (12) can be further written as  

ቐ

𝐌 = ∑ (𝐏௘)்𝐌௘𝐏௘ ,    𝐃 = ∑ (𝐏௘)்𝐃௘𝐏௘ ,   ௌ
௘ୀଵ 𝐊 = ∑ (𝐏௘)்𝐊௘𝐏௘  ௌ

௘ୀଵ   ௌ
௘ୀଵ

𝐔̈௡ = ∑ (𝐏௘)்ௌ
௘ୀଵ 𝐔̈௡

௘ ,    𝐔௡ = ∑ (𝐏௘)்ௌ
௘ୀଵ 𝐔̇௡

௘

𝐔௡ = ∑ (𝐏௘)்ௌ
௘ୀଵ 𝐔௡

௘ ,        𝐟௡ = ∑ (𝐏௘)்ௌ
௘ୀଵ 𝐟௡

௘

 ............. (13) 

Where, S is the total number of spectral elements used in the formulation. The P matrix is 

composed of zeros and ones to assemble the elements for the global representation based 

on the topology of the element orientation. Further the boundary conditions are the 

necessary part to implement in the global model. Here in this problem the time domain 

displacement is provided on the top surface of the laminated composite plate. The 
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internal layers will have stress and displacement continuity conditions. The equation (12) 

can be solved using standard FEM explicit method. 

5.8 APPLICATION OF WEIGHTED RESIDUAL PRINCIPLE 

The weighted residual principle does not require the knowledge of the principles 

of virtual displacements or total minimum potential energy but only needs the governing 

differential equations of the problem. For the plane elasticity problem of wave 

propagation in laminated composite plates, the three-dimensional equations of motion are 

the governing equations which are the strong form of the problem. 

The equations of motion can be written as: 

డఙభభ

డ௫భ
+

డఙభమ

డ௫మ
+

డఙభయ

డ௫య
+ 𝑓ଵ =  𝜌𝑢̈  .......................................................................... (14a) 

డఙమభ

డ௫భ
+

డఙమమ

డ௫మ
+ 

డఙమయ

డ௫య
+ 𝑓ଶ =  𝜌𝑣̈  ......................................................................... (14b) 

డఙయభ

డ௫భ
+

డఙయమ

డ௫మ
+

డఙయయ

డ௫య
+ 𝑓ଷ =  𝜌𝑤̈  ......................................................................... (14c) 

Due to stress symmetry, it can be stated that, 𝜎ଵଶ =  𝜎ଶଵ ; 𝜎ଵଷ =  𝜎ଷଵ ;  𝜎ଶଷ =  𝜎ଷଶ. 

Determining the stress parameters, generalized Hook’s law can be utilized. From the 

generalized Hook’s Law in 3D, we can write, 
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⎩
⎪
⎨

⎪
⎧

𝜎ଵଵ

𝜎ଶଶ
𝜎ଷଷ

𝜎ଶଷ
𝜎ଷଵ

𝜎ଵଶ⎭
⎪
⎬

⎪
⎫

=  

⎣
⎢
⎢
⎢
⎢
⎡

ℂଵଵ ℂଵଶ ℂଵଷ

ℂଶଵ ℂଶଶ ℂଶଷ

ℂଷଵ ℂଷଶ ℂଷଷ

    
0 0 0
0 0 0
0 0 0

0 0  0
0 0 0
0 0 0

    

ℂସସ 0     0
0 ℂହହ    0
0 0 ℂ଺଺⎦

⎥
⎥
⎥
⎥
⎤

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝜕𝑢

𝜕𝑥ଵ

𝜕𝑣

𝜕𝑥ଶ

𝜕𝑤

𝜕𝑥ଷ

1

2
൬

𝜕𝑣

𝜕𝑥ଷ
+

𝜕𝑤

𝜕𝑥ଶ
൰

1

2
൬

𝜕𝑤

𝜕𝑥ଵ
+

𝜕𝑢

𝜕𝑥ଷ
൰

1

2
൬

𝜕𝑢

𝜕𝑥ଶ
+

𝜕𝑣

𝜕𝑥ଵ
൰

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 

Now, determining each term of the stress parameters using Hook’s laws, one can get, 

𝜎ଵଵ =  ℂଵଵ

𝜕𝑢

𝜕𝑥ଵ
+ ℂଵଶ

𝜕𝑣

𝜕𝑥ଶ
+  ℂଵଷ

𝜕𝑤

𝜕𝑥ଷ
  

𝜎ଶଶ =  ℂଶଵ

𝜕𝑢

𝜕𝑥ଵ
+ ℂଶଶ

𝜕𝑣

𝜕𝑥ଶ
+ ℂଶଷ

𝜕𝑤

𝜕𝑥ଷ
 

𝜎ଷଷ =  ℂଷଵ

𝜕𝑢

𝜕𝑥ଵ
+ ℂଷଶ

𝜕𝑣

𝜕𝑥ଶ
 + ℂଷଷ

𝜕𝑤

𝜕𝑥ଷ
 

𝜎ଶଷ =  
1

2
ℂସସ ൬

𝜕𝑣

𝜕𝑥ଷ
+

𝜕𝑤

𝜕𝑥ଶ
൰ =  𝜎ଷଶ 

𝜎ଷଵ =  
1

2
ℂହହ ൬

𝜕𝑤

𝜕𝑥ଵ
+

𝜕𝑢

𝜕𝑥ଷ
൰ =  𝜎ଵଷ 

𝜎ଵଶ =  
1

2
ℂ଺଺ ൬

𝜕𝑢

𝜕𝑥ଶ
+

𝜕𝑣

𝜕𝑥ଵ
൰ =  𝜎ଶଵ 

Differentiating direct and shear stresses, it can be written, 

𝜕𝜎ଵଵ

𝜕𝑥ଵ
=  

𝜕

𝜕𝑥ଵ
൬ℂଵଵ

𝜕𝑢

𝜕𝑥ଵ
+ ℂଵଶ

𝜕𝑣

𝜕𝑥ଶ
+ ℂଵଷ

𝜕𝑤

𝜕𝑥ଷ
൰ 
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𝜕𝜎ଶଶ

𝜕𝑥ଶ
=  

𝜕

𝜕𝑥ଶ
൬ℂଶଵ

𝜕𝑢

𝜕𝑥ଵ
+  ℂଶଶ

𝜕𝑣

𝜕𝑥ଶ
 + ℂଶଷ

𝜕𝑤

𝜕𝑥ଷ
൰ 

𝜕𝜎ଷଷ

𝜕𝑥ଷ
=  

𝜕

𝜕𝑥ଷ
൬ℂଷଵ

𝜕𝑢

𝜕𝑥ଵ
+  ℂଷଶ

𝜕𝑣

𝜕𝑥ଶ
 + ℂଷଷ

𝜕𝑤

𝜕𝑥ଷ
൰ 

డఙభమ

డ௫మ
=

ଵ

ଶ

డ

డ௫మ
ℂ଺଺ ቀ

డ௨

డ௫మ
+

డ௩

డ௫భ
ቁ    

డఙమభ

డ௫భ
=

ଵ

ଶ

డ

డ௫భ
ℂ଺଺ ቀ

డ௨

డ௫మ
+

డ௩

డ௫భ
ቁ 

డఙయభ

డ௫భ
=

ଵ

ଶ

డ

డ௫భ
ℂହହ ቀ

డ௪

డ௫భ
+

డ௨

డ௫య
ቁ    

డఙభయ

డ௫య
=

ଵ

ଶ

డ

డ௫య
ℂହହ ቀ

డ௪

డ௫భ
+

డ௨

డ௫య
ቁ 

డఙమయ

డ௫య
=

ଵ

ଶ

డ

డ௫య
ℂସସ ቀ

డ௩

డ௫య
+

డ௪

డ௫మ
ቁ  

డఙయమ

డ௫మ
=

ଵ

ଶ

డ

డ௫మ
ℂ ቀ

డ௩

డ௫య
+

డ௪

డ௫మ
ቁ 

Therefore, substituting these values in Eq 14, one can write, 

−
డ

డ௫భ
ቀℂଵଵ

డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+ ℂଵଷ

డ௪

డ௫య
ቁ −  

డ

డ௫మ
ℂ଺଺ ቀ

డ௨

డ௫మ
+

డ௩

డ௫భ
ቁ −  

డ

డ௫య
ℂହହ ቀ

డ௪

డ௫భ
+

డ௨

డ௫య
ቁ =

 𝑓ଵ −  𝜌𝑢̈  ....................................................................................................................... (15a) 

−
డ

డ௫భ
ℂ଺଺ ቀ

డ௨

డ௫మ
+

డ௩

డ௫భ
ቁ −

డ

డ௫మ
ቀℂଶଵ

డ௨

డ௫భ
+  ℂଶଶ

డ௩

డ௫మ
 +  ℂଶଷ

డ௪

డ௫య
ቁ −  

డ

డ௫య
ℂସସ ቀ

డ௩

డ௫య
+

డ௪

డ௫మ
ቁ =

 𝑓ଶ −  𝜌𝑣̈   ...................................................................................................................... (15b) 

−
డ

డ௫భ
ℂହହ ቀ

డ௪

డ௫భ
+

డ௨

డ௫య
ቁ −  

డ

డ௫మ
ℂସସ ቀ

డ௩

డ௫య
+

డ௪

డ௫మ
ቁ −

డ

డ௫య
ቀℂଷଵ

డ௨

డ௫భ
+  ℂଷଶ

డ௩

డ௫మ
 +  ℂଷଷ

డ௪

డ௫య
ቁ =

  𝑓ଷ −  𝜌𝑤̈  ..................................................................................................................... (15c) 

Which can be written as, 

ℂଵଵ

𝜕ଶ𝑢

𝜕𝑥ଶ
+  ℂଵଶ

𝜕ଶ𝑣

𝜕𝑥𝜕𝑦
+ ℂଵଷ

𝜕ଶ𝑤

𝜕𝑥𝜕𝑧
+

1

2
ℂ଺଺ ቆ

𝜕ଶ𝑢

𝜕𝑦ଶ
+

𝜕ଶ𝑣

𝜕𝑦𝜕𝑥
ቇ +

1

2
ℂହହ ቆ

𝜕ଶ𝑤

𝜕𝑧𝜕𝑥
+

𝜕ଶ𝑢

𝜕𝑧ଶ
ቇ 

+𝜌𝑢̈ − 𝑓ଵ = 0  ............................................................................................................. (16a) 
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ℂଶଵ

𝜕ଶ𝑢

𝜕𝑦𝜕𝑥
+  ℂଶଶ

𝜕ଶ𝑣

𝜕𝑦ଶ
+ ℂଶଷ

𝜕ଶ𝑤

𝜕𝑦𝜕𝑧
+

1

2
ℂ଺଺ ቆ

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
+

𝜕ଶ𝑣

𝜕𝑥ଶ
ቇ +

1

2
ℂସସ ቆ

𝜕ଶ𝑣

𝜕𝑧ଶ
+

𝜕ଶ𝑤

𝜕𝑧𝜕𝑦
ቇ 

+𝜌𝑣̈ −  𝑓ଶ = 0  ............................................................................................................. (16b) 

ℂଷଵ

𝜕ଶ𝑢

𝜕𝑧𝜕𝑥
+ ℂଷଶ

𝜕ଶ𝑣

𝜕𝑧𝜕𝑦
+ ℂଷଷ

𝜕ଶ𝑤

𝜕𝑧ଶ
+

1

2
ℂହହ ቆ

𝜕ଶ𝑤

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑥𝜕𝑧
ቇ +

1

2
ℂସସ ቆ

𝜕ଶ𝑣

𝜕𝑦𝜕𝑧
+

𝜕ଶ𝑤

𝜕𝑦ଶ
ቇ 

+𝜌𝑤̈ − 𝑓ଷ = 0 ............................................................................................................... (16c) 

Equation (15) or (16) are the strong form of the governing equations of a 

laminated composite plane elastic body undergoing small deformations. At this point, a 

weak formulation of these equations is determined. First, multiply equation (15a) with a 

weight function 𝑤ଵ, which is assumed to be differentiable once with respect to direction 

1, 2 and 3, and then integrations over the element domain, Ω௘ have been performed. This 

gives, 

∫ 𝑤ଵ ቂ−
డ

డ௫భ
ቀℂଵଵ

డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+ ℂଵଷ

డ௪

డ௫య
ቁ − 

డ

డ௫మ
ℂ଺଺ ቀ

డ௨

డ௫మ
+

డ௩

డ௫భ
ቁ −  

డ

డ௫య
ℂହହ ቀ

డ௪

డ௫భ
+

డ௨

డ௫య
ቁ +  𝜌𝑢̈ −  𝑓ଵቃ 𝑑𝕧 = 0  ............................................................................................... (17) 

Let’s assume,  

 𝐹ଵ = ℂଵଵ
డ௨

డ௫భ
+ ℂଵଶ

డ௩

డ௫మ
 + ℂଵଷ

డ௪

డ௫య
    

𝐹ଶ = ℂ଺଺
డ௨

డ௫మ
+ ℂ଺଺

డ௩

డ௫భ
  and   

𝐹ଷ = ℂହହ
డ௪

డ௫భ
+ ℂହହ

డ௨

డ௫య
  

From (17a), it can be written as, 
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∫ 𝑤ଵ ቂ−
డ

డ௫భ
(𝐹ଵ) −

డ

డ௫మ
(𝐹ଶ) −

డ

డ௫య
(𝐹ଷ) + 𝜌𝑢̈ −  𝑓ଵቃ 𝑑𝕧 = 0  ........................................ (18a) 

Now, product of differentiation rule gives us, 

డ

డ௫భ
(𝑤ଵ𝐹ଵ) =  

డ௪భ

డ௫భ
𝐹ଵ + 𝑤ଵ

డிభ

డ௫భ
 =>   −𝑤ଵ

డிభ

డ௫భ
=  

డ௪భ

డ௫భ
𝐹ଵ −

డ

డ௫భ
(𝑤ଵ𝐹ଵ)  

డ

డ௫మ
(𝑤ଵ𝐹ଶ) =  

డ௪భ

డ௫మ
𝐹ଶ + 𝑤ଵ

డிమ

డ௫మ
 =>   −𝑤ଵ

డிమ

డ௫మ
=  

డ௪భ

డ௫మ
𝐹ଶ −

డ

డ௫మ
(𝑤ଵ𝐹ଶ)  

డ

డ௫య
(𝑤ଵ𝐹ଷ) =  

డ௪భ

డ௫య
𝐹ଷ + 𝑤ଵ

డிయ

డ௫య
 =>   −𝑤ଵ

డிయ

డ௫య
=  

డ௪భ

డ௫య
𝐹ଷ −

డ

డ௫య
(𝑤ଵ𝐹ଷ)  

Using divergence theorem, one can get, 

න
𝜕

𝜕𝑥ଵ

(𝑤ଵ𝐹ଵ)𝑑𝑥𝑑𝑦𝑑𝑧 = ර 𝑤ଵ𝐹ଵ𝑛ଵ𝑑𝓈 

න
𝜕

𝜕𝑥ଶ

(𝑤ଵ𝐹ଶ)𝑑𝑥𝑑𝑦𝑑𝑧 = ර 𝑤ଵ𝐹ଶ𝑛ଶ𝑑𝓈 

න
𝜕

𝜕𝑥ଷ

(𝑤ଵ𝐹ଷ)𝑑𝑥𝑑𝑦𝑑𝑧 = ර 𝑤ଵ𝐹ଷ𝑛ଷ𝑑𝓈 

Therefore,  

−𝑤ଵ

𝜕𝐹ଵ

𝜕𝑥ଵ
=  

𝜕𝑤ଵ

𝜕𝑥ଵ
𝐹ଵ − ර 𝑤ଵ𝐹ଵ𝑛ଵ𝑑𝓈 

−𝑤ଵ

𝜕𝐹ଶ

𝜕𝑥ଶ
=  

𝜕𝑤ଵ

𝜕𝑥ଶ
𝐹ଶ − ර 𝑤ଵ𝐹ଶ𝑛ଶ𝑑𝓈 

−𝑤ଵ

𝜕𝐹ଷ

𝜕𝑥ଷ
=  

𝜕𝑤ଵ

𝜕𝑥ଷ
𝐹ଷ − ර 𝑤ଵ𝐹ଷ𝑛ଷ𝑑𝓈 
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Putting these values in Equation (18a), we get, 

𝜕𝑤ଵ

𝜕𝑥ଵ
𝐹ଵ𝑑𝕧 − ර 𝑤ଵ𝐹ଵ𝑛ଵ𝑑𝓈 +

𝜕𝑤ଵ

𝜕𝑥ଶ
𝐹ଶ𝑑𝕧 − ර 𝑤ଵ𝐹ଶ𝑛ଶ𝑑𝓈 +

𝜕𝑤ଵ

𝜕𝑥ଷ
𝐹ଷ𝑑𝕧 − ර 𝑤ଵ𝐹ଷ𝑛ଷ𝑑𝓈

+ න 𝑤ଵ𝜌𝑢̈  𝑑𝕧 − න 𝑤ଵ𝑓ଵ 𝑑𝕧 = 0 

 ∫[
డ௪భ

డ௫భ
ቀℂଵଵ

డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+ ℂଵଷ

డ௪

డ௫య
ቁ + 

డ௪భ

డ௫మ
 ቀℂ଺଺

డ௨

డ௫మ
+ ℂ଺଺

డ௩

డ௫భ
ቁ +

డ௪భ

డ௫య
 ቀℂହହ

డ௪

డ௫భ
+ ℂହହ

డ௨

డ௫య
ቁ +  𝑤ଵ𝜌𝑢̈ −  𝑤ଵ𝑓ଵ ] 𝑑𝕧 − ∮ 𝑤ଵ ቂ𝑛ଵ ቀℂଵଵ

డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+

ℂଵଷ
డ௪

డ௫య
ቁ +  𝑛ଶ ቀℂ଺଺

డ௨

డ௫మ
+ ℂ଺଺

డ௩

డ௫భ
ቁ + 𝑛ଷ ቀℂହହ

డ௪

డ௫భ
+ ℂହହ

డ௨

డ௫య
ቁቃ 𝑑𝓈 = 0 

 

 ∫[ℂଵଵ
డ௪భ

డ௫భ

డ௨

డ௫భ
+  ℂଵଶ

డ௪భ

డ௫భ

డ௩

డ௫మ
+ ℂଵଷ

డ௪భ

డ௫భ

డ௪

డ௫య
+ ℂ଺଺

డ௪భ

డ௫మ

డ௨

డ௫మ
+ ℂ଺଺

డ௪భ

డ௫మ

డ௩

డ௫భ
+

 ℂହହ
డ௪భ

డ௫య

డ௪

డ௫భ
+ ℂହହ

డ௪భ

డ௫య

డ௨

డ௫య
+ 𝑤ଵ𝜌𝑢̈ − 𝑤ଵ𝑓ଵ ] 𝑑𝕧 − ∮ 𝑤ଵ ቂ𝑛ଵ ቀℂଵଵ

డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+

ℂଵଷ
డ௪

డ௫య
ቁ +  𝑛ଶ ቀℂ଺଺

డ௨

డ௫మ
+ ℂ଺଺

డ௩

డ௫య
ቁ + 𝑛ଷ ቀℂହହ

డ௪

డ௫భ
+ ℂହହ

డ௨

డ௫య
ቁቃ 𝑑𝓈 = 0 

Which can be deduced as, 

 ∫ ቂℂଵଵ
డ௪భ

డ௫భ

డ௨

డ௫భ
+  ℂଵଶ

డ௪భ

డ௫భ

డ௩

డ௫మ
+  ℂଵଷ

డ௪భ

డ௫భ

డ௪

డ௫య
+ ℂ଺଺

డ௪భ

డ௫మ

డ௨

డ௫మ
+ ℂ଺଺

డ௪భ

డ௫మ

డ௩

డ௫భ
+

 ℂହହ
డ௪భ

డ௫య

డ௪

డ௫భ
+ ℂହହ

డ௪భ

డ௫య

డ௨

డ௫య
+ 𝑤ଵ𝜌𝑢̈ − 𝑤ଵ𝑓ଵ ቃ 𝑑𝕧 − ∮ 𝑤ଵ𝑡ଵ𝑑𝓈 = 0 ................... (19a) 

Where, 

 𝑡ଵ = 𝑛ଵ ቀℂଵଵ
డ௨

డ௫భ
+  ℂଵଶ

డ௩

డ௫మ
+ ℂଵଷ

డ௪

డ௫య
ቁ + 𝑛ଶ ቀℂ଺଺

డ௨

డ௫మ
+ ℂ଺଺

డ௩

డ௫భ
ቁ +

𝑛ଷ ቀℂହହ
డ௪

డ௫భ
+ ℂହହ

డ௨

డ௫య
ቁ 

Similarly, from equation (15b) and (15c), it can be written as, 
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∫ ቂℂଶଵ
డ௪మ

డ௫మ

డ௨

డ௫భ
+ ℂଶଶ

డ௪మ

డ௫మ

డ௩

డ௫మ
+  ℂଶଷ

డ௪మ

డ௫మ

డ௪

డ௫య
+ ℂ଺଺

డ௪మ

డ௫భ

డ௨

డ௫మ
+ ℂ଺଺

డ௪మ

డ௫భ

డ௩

డ௫భ
+

 ℂସସ
డ௪మ

డ௫య

డ௩

డ௫య
+ ℂସସ

డ௪మ

డ௫య

డ௪

డ௫మ
+ 𝑤ଶ𝜌𝑣̈ −  𝑤ଶ𝑓ଶ ቃ 𝑑𝕧 − ∮ 𝑤ଶ𝑡ଶ𝑑𝓈 = 0 .................. (19b) 

and 

∫ ቂℂଷଵ
డ௪య

డ௫య

డ௨

డ௫భ
+ ℂଷଶ

డ௪య

డ௫య

డ௩

డ௫మ
+  ℂଷଷ

డ௪య

డ௫య

డ௪

డ௫య
+ ℂହହ

డ௪య

డ௫భ

డ௪

డ௫భ
+ ℂହହ

డ௪య

డ௫భ

డ௨

డ௫య
+

 ℂସସ
డ௪య

డ௫మ

డ௩

డ௫య
+ ℂସସ

డ௪య

డ௫మ

డ௪

డ௫మ
+ 𝑤ଷ𝜌𝑤̈ −  𝑤ଷ𝑓ଷ ቃ 𝑑𝕧 − ∮ 𝑤ଷ𝑡ଷ𝑑𝓈 = 0 ................. (19c) 

Equation (19) gives the weak form of the governing equations. In this stage, a 

spectral element approximation is introduced which is a standard procedure similar to 

FEM. The displacement at the element level can be approximated as, 

𝑢 =  ∑ 𝑢௝
௘(𝑡) 𝜓௝

௘(1,2,3)   

𝑣 =  ∑ 𝑣௝
௘(𝑡)𝜓௝

௘(1,2,3)   

𝑤 =  ∑ 𝑤௝
௘(𝑡)𝜓௝

௘(1,2,3)  

Or, it can be expressed as, 

𝑈 =  ቊ
𝑢௘

𝑣௘

𝑤௘
ቋ = ቎

𝜓ଵ
௘ 0 0

0 𝜓ଵ
௘ 0

0 0 𝜓ଵ
௘

𝜓ଶ
௘ . . . .

0 𝜓ଶ
௘ 0

0 0 𝜓ଶ
௘

𝜓௡
௘ 0 0

. . . . 𝜓௡
௘ 0

. . . . 𝜓௡
௘

቏

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑢ଵ
௘

𝑣ଵ
௘

𝑤ଵ
௘

𝑢ଶ
௘

𝑣ଶ
௘

𝑤ଶ
௘

⋮
⋮

𝑢௡
௘

𝑣௡
௘

𝑤௡
௘⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

Using Galekin approximation, one can set 𝑤ଵ =  𝜓௜, 𝑤ଶ =  𝜓௜ and 𝑤ଷ =  𝜓௜ in equation 

19, and thus the ith equation over an element (therefore, superscript ‘e’ has been omitted) 

can be written as follows: 
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∫[ቀℂଵଵ
డట೔

డ௫భ

డటೕ

డ௫భ
+  ℂ଺଺

డట೔

డ௫మ

డటೕ

డ௫మ
 +  ℂହହ

డట೔

డ௫య

డటೕ

డ௫య
ቁ 𝑢௝ +  ቀℂଵଶ

డట೔

డ௫భ

డటೕ

డ௫మ
+ ℂ଺଺

డట೔

డ௫మ

డటೕ

డ௫భ
ቁ 𝑣௝ +

 ቀℂଵଷ
డట೔

డ௫భ

డటೕ

డ௫య
+ ℂହହ

డట೔

డ௫య

డటೕ

డ௫భ
ቁ 𝑤௝ +  𝜓௜𝜌𝑢̈ − 𝜓௜𝑓ଵ ] 𝑑𝕧 − ∮ 𝜓௜𝑡ଵ𝑑𝓈 = 0  

 

∫[ቀ ℂଶଵ
డట೔

డ௫మ

డటೕ

డ௫భ
+  ℂ଺଺

డట೔

డ௫భ

డటೕ

డ௫మ
ቁ 𝑢௝ +  ቀℂ଺଺

డట೔

డ௫భ

డటೕ

డ௫భ
+  ℂଶଶ

డట೔

డ௫మ

డటೕ

డ௫మ
 +  ℂସସ

డట೔

డ௭

డటೕ

డ௫య
ቁ 𝑣௝ +

ቀ ℂଶଷ
డట೔

డ௫మ

డటೕ

డ௫య
+  ℂସସ

డట೔

డ௫య

డటೕ

డ௫మ
ቁ 𝑤௝ + 𝜓௜𝜌𝑣̈ − 𝜓௜𝑓ଶ ] 𝑑𝕧 − ∮ 𝜓௜𝑡ଶ𝑑𝓈 = 0  

And, 

∫[ቀ ℂଷଵ
డట೔

డ௫య

డటೕ

డ௫భ
+  ℂହହ

డట೔

డ௫భ

డటೕ

డ௫య
ቁ 𝑢௝ + ቀ ℂଷଶ

డట೔

డ௫య

డటೕ

డ௫మ
+  ℂସସ

డట೔

డ௫మ

డటೕ

డ௫య
ቁ 𝑣௝ +  ቀℂହହ

డట೔

డ௫భ

డటೕ

డ௫భ
 +

 ℂସସ
డట೔

డ௫మ

డటೕ

డ௫మ
+ ℂଷଷ

డట೔

డ௫య

డటೕ

డ௫య
ቁ 𝑤௝ + 𝜓௜𝜌𝑤̈ − 𝜓௜𝑓ଷ ] 𝑑𝕧 − ∮ 𝜓௜𝑡ଷ𝑑𝓈 = 0  

In these three equations, let’s assume, 

𝐾௜௝
ଵଵ =  ℂଵଵ

డట೔

డ௫భ

డటೕ

డ௫భ
+  ℂ଺଺

డట೔

డ௫మ

డటೕ

డ௫మ
 + ℂହହ

డట೔

డ௫య

డటೕ

డ௫య
   

𝐾௜௝
ଵଶ =  ℂଵଶ

డట೔

డ௫భ

డటೕ

డ௫మ
+ ℂ଺଺

డట೔

డ௫మ

డటೕ

డ௫భ
    

𝐾௜௝
ଵଷ = ℂଵଷ

డట೔

డ௫భ

డటೕ

డ௫య
+ ℂହହ

డట೔

డ௫య

డటೕ

డ௫భ
  

𝐾௜௝
ଶଵ =  ℂଶଵ

డట೔

డ௫మ

డటೕ

డ௫భ
+  ℂ଺଺

డట೔

డ௫భ

డటೕ

డ௫మ
 ;    

𝐾௜௝
ଶଶ = ℂ଺଺

డట೔

డ௫భ

డటೕ

డ௫భ
+  ℂଶଶ

డట೔

డ௫మ

డటೕ

డ௫మ
 +  ℂସସ

డట೔

డ௭

డటೕ

డ௫య
  

𝐾௜௝
ଶଷ =  ℂଶଷ

డట೔

డ௫మ

డటೕ

డ௫య
+  ℂସସ

డట೔

డ௫య

డటೕ

డ௫మ
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𝐾௜௝
ଷଵ = ℂ

డట೔

డ௫య

డటೕ

డ௫భ
+  ℂହହ

డట೔

డ௫భ

డటೕ

డ௫య
 ; 

𝐾௜௝
ଷଶ =  ℂଷଶ

డట೔

డ௫య

డటೕ

డ௫మ
+  ℂସସ

డట೔

డ௫మ

డటೕ

డ௫య
 ; 

𝐾௜௝
ଷଷ =  ℂହହ

డట೔

డ௫భ

డటೕ

డ௫భ
 +  ℂସସ

డట೔

డ௫మ

డటೕ

డ௫మ
+ ℂଷଷ

డట೔

డ௫య

డటೕ

డ௫య
  

𝑀௜௝ =  ∫ 𝜌 𝜓௜𝜓௝ 𝑑𝕧   𝐹௜ =  ∫  𝜓௜ 𝑑𝕧   𝑄௜ =  ∮ 𝜓௜𝑑𝓈 

Therefore, by substituting them, it can be written as, 

൦

𝐾௜௝
ଵଵ 𝐾௜௝

ଵଶ 𝐾௜௝
ଵଷ

𝐾௜௝
ଶଵ 𝐾௜௝

ଶଶ 𝐾௜௝
ଶଷ

𝐾௜௝
ଷଵ 𝐾௜௝

ଷଶ 𝐾௜௝
ଷଷ

൪ ቐ

{𝑢}

{𝑣}

{𝑤}
ቑ +  ቎

𝑀௜௝ 0 0

0 𝑀௜௝ 0

0 0 𝑀௜௝

቏ ቐ

{𝑢̈}

{𝑣̈}

{𝑤̈}
ቑ =  𝐹௜ ቐ

𝑓ଵ

𝑓ଶ

𝑓ଷ

ቑ +  𝑄௜ ൝
𝑡ଵ

𝑡ଶ

𝑡ଷ

ൡ 

In matrix form, 

[𝐾௘]{𝑈௘} +  [𝑀௘]൛𝑈̈௘ൟ  = {𝐹௘} + {𝑄௘} .............................................................. (20) 

Once the element equations are formulated, a standard FE explicit solution method can be 

utilized after assembling them into global equations.  

5.9 SPECTRAL SHAPE FUNCTION 

Assumption of shape function with appropriate order of the polynomial makes 

SEM different from FEM. As a generic comment, it can be said that in all numerical 

methods the dependent variables in the governing differential equations are always 

unknown. But it is necessary to assume the pattern of the solution and plug or enforce the 

solution into the governing equation to solve for the unknown coefficients by satisfying 

the boundary and interface conditions. In FEM, the solution pattern is enforced in the 
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element level. When the solution of an unknown function say 𝑓(𝑥) is assumed, then the 

function is expressed in terms of superposition of few basis functions with specific 

properties when the basis functions contributes to the solution with their respective 

contribution factors. The specific property of the basis function is their orthogonality with 

respect to a suitable weight function. As an example, the function 𝑓(𝑥) can be written as 

a superposition of n basis functions (𝑏௜) and their respective contribution factors (𝑓௜). 

𝑓(𝑥) = 𝑏ଵ𝑓ଵ + 𝑏ଶ𝑓ଶ + 𝑏ଶ𝑓ଶ + 𝑏ଷ𝑓ଷ … . . +𝑏௡𝑓௡  .................................................. (21) 

Using a Taylor series expansion of n-th order of the same function within a certain zone 

in the neighborhood of a, one can write, 

 𝑓(𝑥) = 𝑓(𝑎) +
௫ି௔

ଵ!
𝑓(ଵ)(𝑎) +

(௙ି௔)మ

ଶ!
𝑓ଶ(𝑎) + ⋯ +

(௫ି௔)೙

௡!
𝑓(௡)(𝑎) ................... (22) 

Comparing the equation (8) and the equation (9), it can be visualized that they are spin 

off from the similar concept. Taylor series expansion helps any unknown function to 

expand into a polynomial function and thus the polynomial orders can be assumed to be 

the basis functions and the derivatives of the unknown function at the pivotal point ‘a’ 

can be assumed to be the contribution factors. The n-th basis function and Lagrange 

residual in the Taylor series expansion can be written as, 

𝑏௡ =
(௫ି௔)೙

(௡)!
;  

ୢ௕೙

ୢ୶
=

(௫ି௔)೙శభ

(௡ାଵ)!
𝑓(௡ାଵ)(𝑎) .................................................................................... (23) 

The basis functions can also be the trigonometric functions and if the sin and cos 

functions are used as basis functions, the expansion of the series will be called the Fourier 
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series expansion. Irrespective of the method the polynomial expansions are imposed at 

the element level in FEM and unknown functions inside the element are approximated. In 

most of the polynomial expansions, the nodal points where the unknown function values 

are zero at the element boundaries are always equally spaced. However, as per the 

discussion in the previous section to avoid the Runge phenomenon it is necessary to use 

polynomial functions where the nodal points are not uniformly distributed at the element 

boundary.  Hence, the basis function has to be defined such a way that the above 

requirements are satisfied. In this work, orthogonal Lobatto polynomials are utilized.    

5.10 LOBATTO POLYNOMIALS  

The basis functions in the Lobatto polynomial is described as the first order 

derivative of the Legendre polynomial. Using Rodrigues’s formula, the Legendre 

polynomial can be written as:  

𝑃௡(𝜉) =
ଵ

ଶ೙௡!

ௗ೙

ௗక೙
(𝜉ଶ − 1)௡ ,  n= 0, 1, 2, …k…. n .............................................. (24) 

Hence the Lobatto polynomial can be written as, 

𝐿௡(𝜉) =
ௗ

ௗక
𝑃௡ାଵ(𝜉)    n=0,1, 2, ….k …. N ........................................................ (25) 

The k-th order Lobatto polynomial will be 

𝐿௞(𝜉) =
ଵ

ଶೖశభ(௞ାଵ)!

ௗೖశమ

ௗకೖశమ
(𝜉ଶ − 1)௞ାଵ ................................................................. (26) 

As discussed in the previous section that the specific property of the basis functions is the 

orthogonality of the function with suitable weight function. Hence, it was found that the 
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Lobatto polynomials are orthogonal with respect to the weight function (1 − 𝜉ଶ) in the 

domain [-1,+1].   

∫ 𝐿௜(𝜉)𝐿௝(𝜉)(1 − 𝜉ଶ)𝑑𝜉 =
ଶ(௜ାଵ)(௜ାଶ)

(ଶ௜ାଷ)

ଵ

ିଵ
𝛿௜௝ ,  i, j = 0, 1, 2.................................. (27) 

where, 𝛿௜௝ is the well-known Kronecker delta function.  

In an n-th order spectral element the internal node points are distributed at the 

roots of the (𝑛 − 2)-th order of Lobatto polynomial (𝐿௡ିଶ(𝜉)) because other two end 

points are placed at -1 and at +1, respectively. The coordinates of the spectral element 

nodes are solved from the following equation, 

(1 − 𝜉ଶ)𝐿௡ିଶ(𝜉) = 0      𝑛 = 2,3, …     

5.11 LOBATTO INTEGRATION QUADRATURE 

In practice, the integration terms stated in the mass matrix and stiffness matrix of 

either equation (11) or (20) are computed by numerical methods. An appropriate 

quadrature rule is important to get the most effective results from the integration and 

overall solution of the problem. If Lobatto polynomial is used, the Lobatto quadrature 

should be used. Whereas for Chebyshev and Laguerre polynomials the Gauss quadrature 

rule and Gauss-Laguerre quadrature rules are to be used, respectively. Here in this 

problem we will use Lobatto polynomial and will used the Lobatto quadrature rule. Since 

numerical implementations are performed in element level before assembling them in 

global equations, an element co-ordinate system is preferable to implement any of the 

integration quadrature. Hence, the shape function matrices are mapped to the normalized 

coordinate system and the Jacobian matrix is introduced. Say for example the integral of 
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any function 𝐇(𝑥, 𝑦, 𝑧) over the element volume can be transformed to a non-dimensional 

coordinate system of 𝜉, 𝜂, 𝛽 each defined between [-1,+1] and the result of the integral 

will be identical. We can write this case as follows          

𝐼௘ = ∫ 𝐇(𝑥, 𝑦, 𝑧)𝑑𝑉௘ = ∫ ∫ ∫ 𝐇(𝜉, 𝜂, 𝛽) det(𝐉) 𝑑𝜉 𝑑𝜂 𝑑𝛽
ାଵ

ିଵ

ାଵ

ିଵ

ାଵ

ିଵஐ
 ............................................. (28) 

Where, 𝐉 is the Jacobi matrix calculated as follows  

𝐉 =

⎣
⎢
⎢
⎢
⎡

డ௫

డక

డ௬

డక

డ௭

డక

డ௫

డఎ

డ௬

డఎ

డ௭

డఎ

డ௫

డఉ

డ௬

డఉ

డ௭

డఉ⎦
⎥
⎥
⎥
⎤

    ............................................................................................. (29) 

The derivative of the spectral shape functions of an m-noded spectral element can be 

calculated as follows  

⎩
⎪
⎨

⎪
⎧

డே೔

డ௫
డே೔

డ௬

డே೔

డ௭ ⎭
⎪
⎬

⎪
⎫

=  𝐉ିଵ

⎩
⎪
⎨

⎪
⎧

డே೔

డక

డே೔

డఎ

డே೔

డఉ ⎭
⎪
⎬

⎪
⎫

 𝑖 = 1, … … . , 𝑚    ............................................................... (30) 

The quadrature rule to calculate the integral in equation (28) can be written in a 

generalized form as follows 

𝐼௘ = න න න 𝐇(𝜉, 𝜂, 𝛽) det(𝐉) 𝑑𝜉 𝑑𝜂 𝑑𝛽

ାଵ

ିଵ

ାଵ

ିଵ

ାଵ

ିଵ

 

    =  ∑ ∑ ∑ 𝜔௜𝜔௝𝜔௞𝐇൫𝜙௜, 𝜙௝ , 𝜙௞൯det (𝐉)
௡య
௞ୀଵ

௡మ
௝ୀଵ

௡భ
௜ୀଵ   ............................................................. (31) 

Where, 𝜔௜ , 𝜔௝ , 𝜔௞ are the weight factor and 𝜙௜ , 𝜙௝ , 𝜙௞ are the abscissae where the 

function values are obtained. The values depend on the number of quadrature points 
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(𝑛ଵ, 𝑛ଶ , 𝑛ଷ) used in the quadrature rule. The numerical integration in Lobatto quadrature 

use the following formula  

∫ 𝐻(𝜉)𝑑𝜉 =
ଶ

௡(௡ିଵ)
[𝐻(−1) + 𝐻(+1)] + ∑ 𝜔௜𝐻(𝜙௜)௡ିଶ

௜ୀଵ
ାଵ

ିଵ
+ 𝐸௥  ............................ (32) 

where, 𝑛 is the number of quadrature points. Weight factors can be calculated as follows 

𝜔௜ =
ଶ

௤(௤ିଵ)௉೜షభ(௔೔)మ
, 𝑖 = 1,2, … … , 𝑛   ............................................................... (33) 

The coordinate of the abscissae can be calculated from the root of the equation  

(1 − 𝜙௜
ଶ)

ௗ

ௗక
𝑃௡ିଵ(𝜙௜) = 0, 𝑖 = 1,2, … … … , 𝑛  .................................................. (34) 

Where, 𝑃௡ିଵ(𝜉) is the Legendre polynomial of order 𝑛 − 1. The error in the equation 

(32) is  

𝐸௥ =
௡(௡ିଵ)మଶమ೙షభ൫(௡ିଶ)!൯

ర

(ଶ௡ିଵ)൫(ଶ௡ିଶ)!൯
య 𝐻(ଶ௡ିଶ)(𝜂),    𝜂 𝜖 [−1, +1]  ...................................... (35) 
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CHAPTER 6 

COMPUTER IMPLEMENTATION OF SPECTRAL ELEMENT METHOD 

6.1 INTRODUCTION 

A computer code has been developed using MATLAB to solve wave propagation 

problem using the formulation presented above by translating the mathematical language 

into computer programming language. The algorithm and the list of variables are 

described below in figure 6.1. 

 

Figure 6.1: Algorithm for solving wave 
propagation problem using SEM. 
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The Table 6.1 shows the list of variables and their number used in the flow chart. 

Table 6.1: List of variables used to write SEM code. 

Parameters / Variables Description Name Identifier 

Geometry Length in x-direction (in m) 

Geometry Length in y-direction (in m) 

Geometry Length in z-direction (in m) 

Number of elements in x-direction 

Number of elements in y-direction 

LX 

LY 

LZ 

NELX 

NELY 

1 

2 

3 

4 

5 

Density (kg/m3) 

Denity x z-direction length 

Stiffness (GPa) 

rho 

mu 

C 

6 

7 

8 

Degree of polynomial 

Time step (nano-second) 

Total number of time step 

P 

dt 

NT 

9 

10 

11 

STEP 1: Spectral Element Mesh Generation  

Length per element in x-direction 

Length per element in y-direction 

Total Number of Element 

Number of GLL nodes per element 

X coordinate of Global geometry 

Y coordinate of Global geometry 

Local to Global node map 

dxe 

dye 

NEL 

NGLL 

x 

y 

iglob 

12 

13 

14 

15 

16 

17 

18 
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Number of global nodes 

Node location in normalized coordinate 

Integration weights using Lobatto quadrature 

nglob 

xgll 

wgll 

19 

20 

21 

STEP 2: Determination of Global Mass and Stiffness matrix  

Global Mass matrix 

Global Stiffness matrix 

Global x-coordinates in ascending order 

Global y-coordinates in ascending order 

Values of shape function in xi-coordinate 

Values of shape function in eta-coordinate 

Derivative of shape function in xi-coordinate 

Derivative of shape function in eta-coordinate 

Damping matrix in the system 

M 

K 

x1 

y1 

Sx 

Sy 

DSx 

DSy 

Damping 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Central frequency 

Number of tones burst cycle 

Total time 

X-coordinate of force location 

Y-coordinate of force location 

Applied force 

CentFreq 

NumCycles 

TotTim 

Fx 

Fy 

F 

31 

32 

33 

34 

35 

36 

STEP 3: Implicit Solver – Newmark Beta Method  

Displacement 

Velocity 

Acceleration 

disp 

vel 

accl 

37 

38 

39 
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6.2 INITIAL SIMULATION PARAMETERS 

The purpose of computer implementation is to demonstrate the effectiveness of 

SEM to evaluate wave propagation in multilayer composite structure. Therefore, a 

suitable type of elements is chosen as the building block in formulating SEM algorithm. 

All initial parameters are computed in three-dimensional space. The geometry and the 

material properties of the composite structure are declared in this section. In addition, the 

number of elements in three-dimensional space are optimized based on available 

computational resources. To facilitate master spectral element, the code is formulated 

based on Nth order approximate polynomials in each of the available dimensions. For 

example, 3rd, 5th and 7th order polynomial can be approximated in direction 1, 2 and 3 

respectively. This information is required to discretize the domain, determining shape 

functions and formulating stiffness and mass matrix. 

6.3 DISCRETIZATION OF PROBLEM DOMAIN  

The first step of the Spectral element method is to discretize the problem domain 

into three-dimensional elements. Each of these elements are composed of group of 

geometrical nodes. The combination of these element nodes constitutes a larger set of 

unique global nodes. In SEM, several types of elements can be assumed. The element 

types can be Tetrahedral, Pyramidal, Prismatic and Hexahedral (brick). In this study, 

Hexahedral brick elements are chosen considering simple geometry of the problem 

domain. As stated earlier, in SEM, the node points are located at the roots of Gauss-

Lobatto-Legendre (GLL) polynomials, unlike FEM, these node points are not spaced 

equally as shown in Figure 6.2. 
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Figure 6.2: Node distribution in Spectral Element methods which are roots 
of 5th order GLL polynomials for 1D, 2D and 3D cases. 

 A master brick element is mapped to a parent domain (ξ, η, ζ) with standard 

interval, [-1, 1], [-1, 1] and [-1, 1]. A subroutine is used to generate the element mapping 

and the discretization points. The global co-ordinates of the node points are calculated 

based on the master element local node points. While calculating the global node points, 

the overlapping faces of the adjoining faces are assigned to the sharing elements and thus 

C0 continuity is ensured. A typical example of a discretized domain with 2 x 2 x 2 

elements having 4 x 3 x 2 GLL points in each element is shown in Figure 6.3. It can be 

observed that a total of eight elements are present in the problem domain. Out of these 

eight elements, four elements are located on the front row (two in front top and two in 

front bottom) and rest fours are located on the back row (two in back top and two in back 

bottom). The origin of this domain is considered at node 1 of element 1. To maintain C0 

continuity, during discretization, specific node points of each elements are designated to 

be shared by the node points of adjoining elements. For example, in Figure 6.3, YZ face 

of element 1 that contains nodes 4, 8, 12, 16, 20 and 24 are shared by YZ face of element 

2. Similarly, XZ face of element 2 (blue) is shared by XZ face (blue) of element 6. Thus, 
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element 1 is connected with elements 2, 3, 4, 5 and 6 either by face or by edge. 

Therefore, it can be seen that a pair of elements shares a face to each other. In a global 

sense, all the green rectangles are in one YZ plane and similarly blue rectangles of each 

element of Figure 6.3 are in other YZ plane. While discretizing, a variable is formulated 

that maps the local numbering of the computational nodes to their global (non-redundant) 

numbering. Based on this map, the three-dimensional coordinates of global node points 

are determined. Formulation of this map is helpful to identify each points of the global 

domain and assign any properties as required by the problem statement.  

 

Figure 6.3: Example of 2 x 2 x 2 elements having 4 x 3 x 2 GLL points in each 
element. 
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6.4 DETERMINATION GLOBAL MASS AND STIFFNESS MATRIX 

This is relatively a long step where local components of the element stiffness and 

mass matrices are determined. Determination of local mass and stiffness matrices allows 

us to formulate element equation applicable to each type of elements used in 

discretization process. In this study, the implementation of computer application is based 

on the element equation formulated for master hexahedral element which is described in 

section 6.2. The concluding equation, eq. 20, of this section describes the general element 

equation. Each of the components of this equation is required to determined and 

formulated for computer application.  

Local Stiffness matrix: The element stiffness matrix is denoted by [𝐾௘] which has 

nine components. For brevity, evaluation of one component is described in this article. 

The first component is 

𝐾௜௝
ଵଵ =  න  ൤ℂଵଵ

𝜕𝜓௜

𝜕𝑥ଵ

𝜕𝜓௝

𝜕𝑥ଵ
+ ℂ଺଺

𝜕𝜓௜

𝜕𝑥ଶ

𝜕𝜓௝

𝜕𝑥ଶ
 +  ℂହହ

𝜕𝜓௜

𝜕𝑥ଷ

𝜕𝜓௝

𝜕𝑥ଷ
൨ 𝑑𝕧 

Which has an integral form on its right-hand side. This integral is computed by 

numerical methods using Lobatto integration quadrature. Therefore, in numerical method, 

the value of 𝐾௜௝
ଵଵ can be calculated as, 

න  ቈℂଵଵ

𝜕𝜓௜

𝜕𝑥ଵ

𝜕𝜓௝

𝜕𝑥ଵ
+ ℂ଺଺

𝜕𝜓௜

𝜕𝑥ଶ

𝜕𝜓௝

𝜕𝑥ଶ
 +  ℂହହ

𝜕𝜓௜

𝜕𝑥ଷ

𝜕𝜓௝

𝜕𝑥ଷ
቉ 𝑑𝕧 

=  ම ቈℂଵଵ

𝜕𝜓௜

𝜕𝑥ଵ

𝜕𝜓௝

𝜕𝑥ଵ
+  ℂ଺଺

𝜕𝜓௜

𝜕𝑥ଶ

𝜕𝜓௝

𝜕𝑥ଶ
 +  ℂହହ

𝜕𝜓௜

𝜕𝑥ଷ

𝜕𝜓௝

𝜕𝑥ଷ
቉  𝑑𝑥ଵ𝑑𝑥ଶ𝑑𝑥ଷ

𝟏

ି𝟏
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= ෍ ෍ ෍ ቈℂଵଵ

𝜕𝜓௜

𝜕𝜉

𝜕𝜓௝

𝜕𝜉
𝜔క௣𝜔ఎ௣𝜔఍௣𝐽௫భ௫భ

+ ℂ଺଺

𝜕𝜓௜

𝜕𝜂

𝜕𝜓௝

𝜕𝜂
𝜔క௣𝜔ఎ௣𝜔఍௣𝐽௫మ௫మ

 

௞

௣ୀଵ

௡

௣ୀଵ

௠

௣ୀଵ

+  ℂହହ

𝜕𝜓௜

𝜕𝜁

𝜕𝜓௝

𝜕𝜁
𝜔క௣𝜔ఎ௣𝜔఍௣𝐽௫య௫య

቉ 

And 𝑀௜௝
ଵଵ can be calculated as, 

𝑀௜௝
ଵଵ  = න 𝜌 𝜓௜𝜓௝ 𝑑𝕧 

          = ම 𝜌 𝜓௜𝜓௝𝑑𝑥ଵ𝑑𝑥ଶ𝑑𝑥ଷ

ଵ

ିଵ

  

         =  ∑ ∑ ∑ 𝜌𝜓௜𝜓௝𝜔క௣𝜔ఎ௣𝜔఍௣𝐽௫భ௫భ

௞
௣ୀଵ

௡
௣ୀଵ

௠
௣ୀଵ  

Where, 

 ℂଵଵ, ℂ଺଺ and ℂହହ are components of the elastic properties and 𝜌 is the density of 

the material properties defined in initial parameter steps. 

𝜓௜ and 𝜓௝ are the three-dimensional shape function. 

డట೔

డ௫భ
 and 

డటೕ

డ௫భ
 are the first derivative of the three-dimensional shape function 

calculated at each of the node points on the each of the elements. 

𝜔క௣, 𝜔ఎ௣ and 𝜔఍௣ are the integration weights at each of the normalized axis. 

𝐽௫భ௫భ
 is the determinant of the Jacobian matrix to transfer coordinates. 

In next paragraphs, calculation of above parameters is discussed.  

Material properties: The components of the elasticity matrix are calculated at each 

element nodes. Since the material properties of an anisotropic material depend on the 

direction of the coordinate axis, an element wise evaluation of the elasticity matrix is a 
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pivotal approach to determine its components. Therefore, the nodal map determined in 

discretization step is used to determine the material properties at each node point. Before 

evaluating local stiffness matrix, a local variable is created by collecting the node points 

that have similar material properties. In this study, multilayer composite specimen is 

assumed to solve the wave propagation problem. Therefore, a transversely isotropic 

material properties is utilized in each layer. As these layers are stacked in X3 direction, 

layer thickness is used as the distance where material properties remain same. Similarly, 

the density of the material can be determined at each node points following the same 

approach. In this study, invariant density is assumed in entire problem domain. 

Shape functions: The shape functions are determined using the Lagrange interpolation 

functions of appropriate order. The Lagrange interpolation functions associated with 

hexahedral elements can be obtained from the corresponding one-dimensional Lagrange 

interpolation functions by taking the tensor products of the X1 direction interpolation 

functions with the tensor product of the X2 and X3 directional interpolation functions. The 

Nth order Lagrange interpolation functions can be associated with the given abscissas, 𝜉. 

The Lagrange interpolation functions associated with the ith abscissa can be defined in 

terms of the abscissas of the data points, 𝜉, where j = 1, 2, 3, ... …, N+1 and denoted as 

LN,i(𝜉). In line with the properties of shape functions, LN,i (𝜉) is equal to zero at all data 

points except at the ith data point where it becomes to one which is same as Kronecker’s 

delta, 𝛿௜௝. Therefore, the Lagrange interpolation functions is as follows, 

𝐿ே,௜(𝜉) =  
(𝜉 − 𝜉ଵ)(𝜉 − 𝜉ଶ) … … (𝜉 − 𝜉௜ିଵ)(𝜉 − 𝜉௜ାଵ) … … (𝜉 − 𝜉ே)(𝜉 − 𝜉ேାଵ) 

(𝜉௜ − 𝜉ଵ)(𝜉௜ − 𝜉ଶ) … … (𝜉௜ − 𝜉௜ିଵ)(𝜉௜ − 𝜉௜ାଵ) … … (𝜉௜ − 𝜉ே)(𝜉௜ − 𝜉ேାଵ) 
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If one-dimensional shape functions in three coordinate axes are denoted as 𝜓క,௠ , 𝜓ఎ,௡ 

and 𝜓఍,௞, the tensor product of three vectors can be performed as follows, 

𝜓ଶௗ,(௠,௡) = 𝜓క,௠ ⨂ 𝜓ఎ,௡
் which is a matrix and ⨂ denotes tensor product.  

This needs to be reshaped as a vector before performing next tensor product which will 

yield three-dimensional shape functions. 

𝜓ଶௗ,(௠௡,ଵ) = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝜓ଶௗ,௠௫௡) 

𝜓ଷௗ =  𝜓ଶௗ,(௠௡,ଵ)⨂ 𝜓఍,௞
் 

First derivative of the shape functions: The first derivative of the one-dimensional shape 

functions can be determined using the following expressions [113], 

𝑑𝜓ଵௗ,௜௝

𝑑𝜉
=

1

𝜉௝ − 𝜉௜
 
(𝜉௝ − 𝜉ଵ)(𝜉௝ − 𝜉ଶ) … … (𝜉௝ − 𝜉௝ିଵ)(𝜉௝ − 𝜉௝ାଵ) … … (𝜉௝ − 𝜉௠ାଵ)

(𝜉௜ − 𝜉ଵ)(𝜉௜ − 𝜉ଶ) … … (𝜉௜ − 𝜉௜ିଵ)(𝜉௝ − 𝜉௜ାଵ) … … (𝜉௜ − 𝜉௠ାଵ)
 

For 𝑖 ≠ 𝑗, and  

𝑑𝜓ଵௗ,௜௜

𝑑𝜉
=

1

𝜉௜ − 𝜉ଵ
+ ⋯ +

1

𝜉௜ − 𝜉௜ିଵ
+  

1

𝜉௜ − 𝜉௜ାଵ
+ ⋯ +

1

𝜉௜ − 𝜉௠ାଵ
  

In case of first derivative of three-dimensional shape functions, it can be calculated as, 

𝑑𝜓(𝜉, 𝜂, 𝜁)

𝑑𝜉
=

𝑑𝜓(𝜉)

𝑑𝜉
 ⨂ 𝜓(𝜂) ்⨂ 𝜓(𝜁)் 

Similarly, first derivative of other two three-dimensional shape functions can be 

determined as follows, 

𝑑𝜓(𝜉, 𝜂, 𝜁)

𝑑𝜂
= 𝜓(𝜉) ⨂ 

𝑑𝜓(𝜂)

𝑑𝜂

்

⨂ 𝜓(𝜁)் 
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𝑑𝜓(𝜉, 𝜂, 𝜁)

𝑑𝜁
= 𝜓(𝜉) ⨂𝜓(𝜂)்⨂ 

𝑑𝜓(𝜁)

𝑑𝜁

்

 

Integration weights: Integration weights are determined to perform Lobatto integration 

quadrature. Therefore, following relationships are utilized to calculate the integration 

weights for an mth order one-dimensional shape functions. 

𝜔௠ =
ଶ

௞(௞ାଵ)
 

ଵ

௅ೖ
మ (క)

  where, m = 2, … …., k and 𝐿௞ is a Legendre polynomial.  

Coordinate transfer: The node points of a hexahedral element are expressed in 

normalized (𝜉, 𝜂, 𝜁) coordinates. The sole objective of utilizing these coordinates is to 

evaluate the integrands of equation 20 numerically. This helps to evaluate this integrand 

for an arbitrary master element which can be adjusted based on the location of any 

element in the entire domain in global coordinates. However, evaluation of the integrand 

for a master element should be such that there exist no spurious gaps between elements 

and no element overlaps persists.  

The three-dimensional shape function, 𝜓௜
௘(𝜉, 𝜂, 𝜁) can be expressed can be 

expressed in terms of local coordinates 𝜉, 𝜂 and 𝜁 and by the chain rule of differentiation 

it can be written as, 

𝑑𝜓௜
௘

𝑑𝜉
=  

𝑑𝜓௜
௘

𝑑𝑥ଵ

𝑑𝑥ଵ

𝑑𝜉
+  

𝑑𝜓௜
௘

𝑑𝑥ଶ

𝑑𝑥ଶ

𝑑𝜉
+

𝑑𝜓௜
௘

𝑑𝑥ଷ

𝑑𝑥ଷ

𝑑𝜉
 

𝑑𝜓௜
௘

𝑑𝜂
=  

𝑑𝜓௜
௘

𝑑𝑥ଵ

𝑑𝑥ଵ

𝑑𝜂
+  

𝑑𝜓௜
௘

𝑑𝑥ଶ

𝑑𝑥ଶ

𝑑𝜂
+

𝑑𝜓௜
௘

𝑑𝑥ଷ

𝑑𝑥ଷ

𝑑𝜂
 

𝑑𝜓௜
௘

𝑑𝜁
=  

𝑑𝜓௜
௘

𝑑𝑥ଵ

𝑑𝑥ଵ

𝑑𝜁
+  

𝑑𝜓௜
௘

𝑑𝑥ଶ

𝑑𝑥ଶ

𝑑𝜁
+

𝑑𝜓௜
௘

𝑑𝑥ଷ

𝑑𝑥ଷ

𝑑𝜁
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In matrix form, 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝜓௜
௘

𝑑𝜉

𝑑𝜓௜
௘

𝑑𝜂

𝑑𝜓௜
௘

𝑑𝜁 ⎭
⎪⎪
⎬

⎪⎪
⎫

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑥ଵ

𝑑𝜉

𝑑𝑥ଶ

𝑑𝜉

𝑑𝑥ଷ

𝑑𝜉
𝑑𝑥ଵ

𝑑𝜂

𝑑𝑥ଶ

𝑑𝜂

𝑑𝑥ଷ

𝑑𝜂
𝑑𝑥ଵ

𝑑𝜁

𝑑𝑥ଶ

𝑑𝜁

𝑑𝑥ଷ

𝑑𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝜓௜
௘

𝑑𝑥ଵ

𝑑𝜓௜
௘

𝑑𝑥ଶ

𝑑𝜓௜
௘

𝑑𝑥ଷ ⎭
⎪⎪
⎬

⎪⎪
⎫

 

This gives the relationship between the derivatives of three-dimensional shape function 

𝜓௜
௘  with respect to the global and local coordinates. Here, the matrix can be defned as the 

Jacobian matrix of the transformation, 

[𝐽] =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑥ଵ

𝑑𝜉

𝑑𝑥ଶ

𝑑𝜉

𝑑𝑥ଷ

𝑑𝜉
𝑑𝑥ଵ

𝑑𝜂

𝑑𝑥ଶ

𝑑𝜂

𝑑𝑥ଷ

𝑑𝜂
𝑑𝑥ଵ

𝑑𝜁

𝑑𝑥ଶ

𝑑𝜁

𝑑𝑥ଷ

𝑑𝜁 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Determinant of the Jacobian matrix can be calculated as, 

Det [𝐽] = 
ௗ௫భ

ௗక
  

ௗ௫మ

ௗఎ
 
ௗ௫య

ௗ఍
  as  

ௗ௫మ

ௗక
= 0, 

ௗ௫య

ௗక
= 0, 

ௗ௫భ

ௗఎ
= 0, etc. 

An example of determining, 𝐽௫భ௫భ
 which transforms first derivative of three-dimensional 

shape functions with respect to 𝑥ଵ, 𝑥ଶ and 𝑥ଷ is as follows, 

𝜕𝜓௜

𝜕𝑥ଵ

𝜕𝜓௝

𝜕𝑥ଵ
𝑑𝑥ଵ𝑑𝑥ଶ𝑑𝑥ଷ =

𝜕𝜓௜

𝜕𝜉

𝜕𝜉

𝜕𝑥ଵ

𝜕𝜓௝

𝜕𝜉

𝜕𝜉

𝜕𝑥ଵ
   

𝜕𝑥ଵ

𝜕𝜉
 𝜕𝜉

𝜕𝑥ଶ

𝜕𝜂
 𝜕𝜂

𝜕𝑥ଷ

𝜕𝜁
 𝜕𝜁 

                       =
డట೔

డక

డటೕ

డక
 𝜕𝜉𝜕𝜂𝜕𝜁  

డక

డ௫భ

డక

డ௫భ
   

డ௫భ

డక

డ௫మ

డఎ

డ௫య

డ఍
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                    =
డట೔

డక

డటೕ

డక
 𝜕𝜉𝜕𝜂𝜕𝜁     

ቀ
ങೣభ
ങ഍

ങೣమ
ങആ

ങೣయ
ങഅ

ቁ

ങೣభ
ങ഍

ങೣభ
ങ഍

 

                   =
𝜕𝜓௜

𝜕𝜉

𝜕𝜓௝

𝜕𝜉
 𝜕𝜉𝜕𝜂𝜕𝜁    𝐽௫భ௫భ

  

Therefore, 𝐽௫భ௫భ
=  

ቀ
ങೣభ
ങ഍

ങೣమ
ങആ

ങೣయ
ങഅ

ቁ

ങೣభ
ങ഍

ങೣభ
ങ഍

  

Similarly, 𝐽௫భ௫మ
 can be calculated as,  𝐽௫భ௫మ

=  
ቀ

ങೣభ
ങ഍

ങೣమ
ങആ

ങೣయ
ങഅ

ቁ

ങೣభ
ങ഍

ങೣమ
ങആ

  

Assembly of local stiffness matrix into global stiffness matrix:  

 Assembly of local stiffness matrix to global stiffness matrix is similar to 

Finite Element Method. In this article, assembly of local stiffness matrix with two 

hexahedral elements are described. Once the local stiffness matrix is determined, each 

component of the local stiffness matrix is assembled in the global stiffness matrix 

following two basic principles, 

A. Continuity of primary variables 

B. Balance of secondary variables. 

As, in next step, the global equations are solved using a suitable solution method, the 

global equation takes the form of 

[𝐾]{𝑈} +  [𝑀]൛𝑈̈ൟ = {𝐹} .................................................................................... (36) 
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Where, 

[𝐾] = Global Stiffness matrix 

[𝑀] = Global mass matrix 

{𝑈} = Primary variable which is displacement in wave propagation problem 

൛𝑈̈ൟ = Second derivative of primary variable with respect to time  

{𝐹} = Secondary variable which is applied force with frequency range. 

In three-dimensional problem, the primary variable has three degree of freedom 

which, therefore, consists of three mutually perpendicular values at each geometric node 

points. It means that, for each nodal point, three equations are needed to determine the 

primary variable. Therefore, at each node point,  

𝑈 = 𝑓(𝑢, 𝑣, 𝑤)   

where, u, v, w are the displacements along X1, X2 and X3 directions, respectively. 

In this study, the global displacement vector, which contains displacements of all 

nodes, is arranged in following fashion, 
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{𝑈} =  

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑢ଵ
ଵ

𝑣ଵ
ଵ

𝑤ଵ
ଵ

..
𝑢௡

ଵ

𝑣௡
ଵ

𝑤௡
ଵ

.

.
𝑢ଵ

௘

..
𝑤௡

௘

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

  ..................................................................................................... (37) 

Where, 𝑢ଵ
௘,.., 𝑤௡

௘ denotes the displacements of eth elements for all of its node points. It 

can be noted that the nodal map contains element wise nodal positions while the global 

displacement vector assumed in equation 37 contains the displacements in global 

sequence. Fulfilment of global displacement requirements necessitates the global stiffness 

and mass matrices to be assembled in global nodal sequence. An example of this 

assembly method is described as follows. 

Consider two hexahedral elements having two node points in each axis direction. 

Therefore, each of the elements has eight (8) node points as shown in Figure 6.4. 

 

Figure 6.4: Global node points of two adjoining elements having 
two nodes at each axis direction. 
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Since each of the node point has three degree of freedom, the global displacement vector 

consists of 12 x 3 = 24 displacement values. Therefore, the global stiffness matrix should 

consist of 24 rows and 24 columns. This 24 x 24 square matrix gets its data values from 

its local counterparts. The local stiffness matrix of element 1 can be computed using the 

method described in ‘Local Stiffness matrix’ section. 

As observed in Figure 6.4, the element 1 has 8 nodes labeled 1, 2, 3, 4, 5, 6, 7, 8 

and element 2 has 8 nodes labeled 2, 9, 4, 10, 6, 11, 8, 12. In global SEM equations, there 

exists 3x12 or 36 values of the displacement vectors. The assigned indexes of the global 

displacement vector are described in Figure 6.5. Note that, first, second and third indexes 

of each node are assigned as direction 1, 2 and 3 respectively. 

 

Figure 6.5: Global displacement vector having values in direction 1, 2 and 3. 

Therefore, the global stiffness matrix contains 36 rows and 36 columns which need to be 

filled in by the local stiffness matrices of the elements. Since each element has 8 nodes, 

the local stiffness matrix contains 24 rows and 24 columns due to three degree of 

freedom in each node.  
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Therefore, the components of the local stiffness matrix for element 1,  

[𝐾ଵଵ
ଵ ] =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐾ଵଵ

ଵ,ଵଵ

𝐾ଵଵ
ଵ,ଶଵ

.

..

..
𝐾ଵଵ

ଵ,଼ଵ

𝐾ଵଵ
ଵ,ଵଶ

𝐾ଵଵ
ଵ,ଶଶ

.

..

..
𝐾ଵଵ

ଵ,଼ଶ

𝐾ଵଵ
ଵ,ଵଷ

𝐾ଵଵ
ଵ,ଶଷ

.

..

..
𝐾ଵଵ

ଵ,଼ଷ

𝐾ଵଵ
ଵ,ଵସ

𝐾ଵଵ
ଵ,ଶସ

.

..

..
𝐾ଵଵ

ଵ,଼ସ

𝐾ଵଵ
ଵ,ଵହ

𝐾ଵଵ
ଵ,ଶହ

.

..

..

𝐾ଵଵ
ଵ,଼ହ

𝐾ଵଵ
ଵ,ଵ଺

𝐾ଵଵ
ଵ,ଶ଺

.

..

..
𝐾ଵଵ

ଵ,଼଺

𝐾ଵଵ
ଵ,ଵ଻

𝐾ଵଵ
ଵ,ଶ଻

.

..

..
𝐾ଵଵ

ଵ,଼଻

𝐾ଵଵ
ଵ,ଵ଼

𝐾ଵଵ
ଵ,ଶ଼

.

..

..
𝐾ଵଵ

ଵ,଼଼
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

[𝐾ଵଶ
ଵ ] =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐾ଵଶ

ଵ,ଵଵ

𝐾ଵଶ
ଵ,ଶଵ

.

..

..
𝐾ଵଶ

ଵ,଼ଵ

𝐾ଵଶ
ଵ,ଵଶ

𝐾ଵଶ
ଵ,ଶଶ

.

..

..
𝐾ଵଶ

ଵ,଼ଶ

𝐾ଵଶ
ଵ,ଵଷ

𝐾ଵଶ
ଵ,ଶଷ

.

..

..
𝐾ଵଶ

ଵ,଼ଷ

𝐾ଵଶ
ଵ,ଵସ

𝐾ଵଶ
ଵ,ଶସ

.

..

..
𝐾ଵଶ

ଵ,଼ସ

𝐾ଵଶ
ଵ,ଵହ

𝐾ଵଶ
ଵ,ଶହ

.

..

..

𝐾ଵଶ
ଵ,଼ହ

𝐾ଵଶ
ଵ,ଵ଺

𝐾ଵଶ
ଵ,ଶ଺

.

..

..
𝐾ଵଶ

ଵ,଼଺

𝐾ଵଶ
ଵ,ଵ଻

𝐾ଵଶ
ଵ,ଶ଻

.

..

..
𝐾ଵଶ

ଵ,଼଻

𝐾ଵଶ
ଵ,ଵ଼

𝐾ଵଶ
ଵ,ଶ଼

.

..

..
𝐾ଵଶ

ଵ,଼଼
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

. . . . . . . . . . . 

  . . . . . . . . .
 . . 

[𝐾ଷଷ
ଵ ] =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐾ଷଷ

ଵ,ଵଵ

𝐾ଷଷ
ଵ,ଶଵ

.

..

..
𝐾ଷଷ

ଵ,଼ଵ

𝐾ଷଷ
ଵ,ଵଶ

𝐾ଷଷ
ଵ,ଶଶ

.

..

..
𝐾ଷଷ

ଵ,଼ଶ

𝐾ଷଷ
ଵ,ଵଷ

𝐾ଷଷ
ଵ,ଶଷ

.

..

..
𝐾ଷଷ

ଵ,଼ଷ

𝐾ଷଷ
ଵ,ଵସ

𝐾ଷଷ
ଵ,ଶସ

.

..

..
𝐾ଷଷ

ଵ,଼ସ

𝐾ଷଷ
ଵ,ଵହ

𝐾ଷଷ
ଵ,ଶହ

.

..

..

𝐾ଷଷ
ଵ,଼ହ

𝐾ଷଷ
ଵ,ଵ଺

𝐾ଷଷ
ଵ,ଶ଺

.

..

..
𝐾ଷଷ

ଵ,଼଺

𝐾ଷଷ
ଵ,ଵ଻

𝐾ଷଷ
ଵ,ଶ଻

.

..

..
𝐾ଷଷ

ଵ,଼଻

𝐾ଷଷ
ଵ,ଵ଼

𝐾ଷଷ
ଵ,ଶ଼

.

..

..
𝐾ଷଷ

ଵ,଼଼
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Similarly, components of the local stiffness matrix of element 2 can be derived. 

At this stage, the components of the local stiffness matrix need to be assembled in a 

matrix that contains 24 rows and 24 columns where local contributions of the 

components are evaluated. Following Figure 6.6 shows the location convention of the 

local stiffness matrix. 
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Figure 6.6: Formation of local stiffness matrix of element 1. Left: Number 
convention of a member of a component matrix. Right: Location convention of a 
local stiffness matrix. 

While assembling the local stiffness matrix from its components, the 

contributions of a node to itself and other nodes of the element need to be accounted for. 

Moreover, the contribution This concept is illustrated in Figure 8 and implementation 

examples are described in Table 6.2. Based on this contribution, each member of each 

components is placed in the local stiffness matrix. The notation 𝐾ଵଶ
ଵ,ଶଵ in Figure 6.6 

indicates that it has a contribution from node 2 and it is contributing to node 1. Therefore, 

it can be located any at nine positions local stiffness matrix which are [4, 1], [4, 2], [4, 3], 

[5, 1], [5, 2], [5, 3], [6, 1], [6, 2] and [6, 3]. Now, the contribution from direction 1 and 

contribution to direction 2 determines the exact location in local stiffness matrix which is 

[4, 2]. 
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Table 6.2: Assembly of element local stiffness matrix from its components. 

Component Contribution 
from node 

Contribution 
to node 

Contribution 
from 

direction  

Contribution 
to direction 

Placement 
in local 
matrix 

𝐾ଵଵ
ଵ,ଵଵ 1 1 1 1 [1, 1] 

𝐾ଵଵ
ଵ,ଵଶ 1 2 1 1 [1, 4] 

𝐾ଵଵ
ଵ,ଵଷ 1 3 1 1 [1, 7] 

𝐾ଵଵ
ଵ,ଵ଼ 1 8 1 1 [1, 22] 

𝐾ଵଶ
ଵ,ଵଵ 1 1 1 2 [1, 2] 

𝐾ଷଶ
ଵ,ଵଵ 1 1 3 2 [3, 2] 

𝐾ଷଶ
ଵ,ଵ଻ 1 7 3 2 [3, 20] 

 

Similarly, the local stiffness matrix of element 2 can be derived from its stiffness 

components. Once the local stiffness matrices are determined, the global stiffness matrix 

can be evaluated its local stiffness parts. The nodes which are not shared by any element, 

the local stiffness values of those nodes are directly placed in the global stiffness matrix 

using the placement convention stated above. Moreover, if there is no contribution from 

one node to another node, the stiffness value is considered to be zero. However, nodes 

that are shared by the elements, values of global stiffness matrix are evaluated by adding 

the local stiffness components of shared nodes. In this example, global nodes [2, 4, 6, 8] 

are shared by both elements. Therefore, respective components of nodes [2, 4, 6, 8] need 

to be summed up. For example, first component of node 2 (which is a global node 2) of 

element 1 is located at [1, 4] of local stiffness matrix of element 1. On the other hand, 

first local node of element 2 is global node 2. Therefore, first nodal component of local 

stiffness matrix of element 2 needs to be added with the first component of node 2 of 

element 1 in global stiffness matrix. 

𝐾 [1, 4] =  𝐾ଵଵ
ଵ,ଵଶ +  𝐾ଵଵ

ଶ,ଵଵ 
Similarly,   

𝐾 [1, 5] =  𝐾ଵଵ
ଵ,ଵଷ +  𝐾ଵଵ

ଶ,ଵଶ 
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And so on. Evaluation and assembly of global stiffness matrix is illustrated in Figure 6.7.  

 

Figure 6.7: Evaluation and assembly of global stiffness matrix from its local 
stiffness matrix. 

6.5 SIMULATION SETUP 

Implementation of SEM to solve wave propagation problem requires setting up 

initial parameters based on the material properties and applied force with specific 

frequency range. In this study, the geometric dimension of the problem is assumed as 24-
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ply composite structure having a dimension of 50 mm X 20 mm X 10 mm. The material 

properties are assumed as follows, 

Density: 1560 kg /m3 

Elasticity matrix: ℂ =  

⎣
⎢
⎢
⎢
⎢
⎡
143.8 6.2 6.2

6.2 13.3 6.5

6.2 6.5 13.3

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

3.4 0 0

0 5.7 0

0 0 5.7⎦
⎥
⎥
⎥
⎥
⎤

 𝐺𝑃𝑎 

Order of the Lobatto polynomial: 5 in all directions 

Order of the shape function: 5 in all directions 

Location of point source: 25 mm X 10 mm X 10 mm 

Type of loading: 1 MHz or 5 MHz or 7.5 MHz 5 count tone burst signal with unit 

amplitude. Example of 1 MHz 5 count tone burst signal is shown in figure 6.8, 

 

Figure 6.8: 5 count tone burst 
with central frequency of 1 MHz 

6.6 SIMULATION RESULTS 

Discretized area using SEM mesh and the point of time signal application are 

shown in following figure, 
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Figure 6.9: Discretized SEM domain with the location of applied point force. 

 

Figure 6.10: (top) Discretized domain of two-layered [0, 90] composite plate with 
five sensing point distinguished by colors. (bottom five) Time history signals of 
respective sensing points identified by the colors. 

 

After successful translation of SEM concept into computer codes, various 

simulations were performed by changing the geometric and simulation parameters. Time 

history signals are collected at multiple configurations and presented in this work.  First, 

simulation results of a two-layered composite plate while excited with a 1 MHz tone 
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burst signal are presented. Afterwards, layers are added to the composite plate. Therefore, 

results with four-layered and eight-layered composite plates are presented. 

 

Figure 6.11: Time history signals at the sensing points of a four-layered [0, 90, 0, 
90] composite specimen marked by the colors. 

 

Figure 6.12: Time history signals at the sensing points of eight-layered [0, 90]4 
composite specimen marked by the colors. 
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Figure 6.13: Snapshots of wave propagation in 0-deg carbon fiber plates. 

 

Figure 6.14: Snapshots of wave propagation in [0 90]2 carbon fiber plates. 
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Figure 6.15: Snapshots of wave propagation in [0 90]4 carbon fiber plates. 

6.7 EXPERIMENTAL VALIDATION 

The results obtained by SEM requires experimental validation to prove its 

effectiveness. However, due to unavailability of 24-layer thick composite plate, an 

experiment was performed with 1.7 mm plate. The orientation of the carbon fibers was 

[0, 90]4. This plate was manufactured from Prepreg using hot-press machine available at 

McNair center of USC. The dimension of this plate was 12 in x 12 in. A center point was 

identified which was excited by a 5-count tone burst signal with a central frequency of 1 

MHz.  The experimental setup is shown in Figure 6.16. 
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Figure 6.16: Experimental setup to acquire wave 
propagation signal through a 1.7 mm thick composite 
plate. 

The input amplitude of the tone burst signal was set to 100 VPP. The obtained 

signal from the 1 MHz contact transducer is shown in Figure 6.17. The input and sensing 

transducers have 25 mm element diameter. 

 

Figure 6.17: Comparison of experimental and SEM simulation results 
excited with a 5-count tone burst signal with a central frequency of 1 
MHz. 
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In order to validate the effectivity of SEM formulation, a simulation was 

performed in line with the specification followed for experimental setup. In this 

simulation the dimension of the plate was considered as 50mm X 1.7mm X 10 mm. The 

excitation signal of 5 count tone burst with a central frequency of 1 MHz was applied at 

seven points which were spread at 12.5 mm following a straight line. The output or 

sensing signal was collected from a single point from the bottom of the plate. The 

simulation and experimental signal were then superimposed to each other which is shown 

in Figure 6.17. It can be noted that the SEM simulation result partially followed the 

experimental results. The possible reasons for the partial matching are as follows: 

i. SEM simulation does not consider damping in it which is evident form the SEM 

results and multiple vibrations of the sensing point is observed. On the other 

hand, the experimental signal contains damping in it which damped out the 

later part of the signal. The part of the signal which has large damping effect 

are colored gray in Figure 6.17.   

ii. In SEM simulation, reflecting boundary conditions are not assumed. For this 

reason, the reflections from the boundary are evident form the SEM signal. 

However, the experimental plate was large enough to avoid the boundary 

reflections. 

iii. The finite excitation regions in SEM simulations were half of the experimental 

length of the simulation. Moreover, in experimental setup the excitation was 

of a circular shape which was absent in SEM configurations. All these 

contributions could be the reasons for the partial mismatch of the SEM results 

with the experimental data. 
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Currently, the SEM code is being developed to adopt the experimental 

configurations which will simulate the composite structures with considerable accuracy. 

An adequate extension of the project would be key to develop this code for highly 

accurate predictions of real time environment. 

6.8 CONCLUSION 

The SEM simulation environment has been developed to simulate wave 

propagation in composite structures. The capability of this software is to simulate high 

frequency (up to 7.5 MHz) ultrasonic wave. To validate the SEM results, an experiment 

was performed in a through transmission configuration with a plate of 1.7 mm thick. 

With a similar configuration, the SEM simulation was also carried out. In both cases, the 

excitation was applied with a 5-count tone burst signal with a central frequency of 1 

MHz. A good agreement of the signal pattern was found for the first part of the signal. 

Due to the absence of damping coefficients, non-reflecting boundary conditions and 

similar finite length of the excitation transducers, in the later part of the signal a partial 

mismatched was observed. A further development on multiple parameters will enhance 

the capability of the code to match with experimental outcome.  
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

One of the limitations of the current ultrasonic NDE technology is the inability to 

inspect composite substrates with inherent curvature located below attenuative topcoats 

with thicknesses ranging from 0.15-0.30 inches. Despite the presence of attenuative and 

aberrative surfaces, many industries such as aerospace, oil and gas, civil, construction etc. 

rely on ultrasonic NDE to assess structural integrity and evaluate structural health. In this 

dissertation, a technique is proposed to propagate ultrasound waves through a 

combination of attenuative and/or aberrative surface and CFRP composite structure. In 

this technique, two approaches are developed.  

In the first approach, two metamaterials are proposed for wave focusing inside 

thick composite plate. The first metamaterial is proposed to understand and achieve 

acoustic beam focusing at ultrasonic frequency and keep the structure transparent to the 

sonic frequencies (<20 kHz). In designing this acoustic metamaterial, a butterfly shaped 

engineered metamaterial consists of an array of stainless-steel split ring resonators of 

different sizes embedded in epoxy matrix are explored. It has been shown that this 

metamaterial is capable of focusing ultrasonic wave at ~37 kHz while remains 

acoustically transparent below ~20 kHz. By virtue of negative refraction phenomenon, 

this butterfly metastructure can be utilized as an acoustic lens. 
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The second metamaterial, a bio-inspired optimized interlock micro-structure, is 

proposed as an ad-hoc metastructure in-front of conventional NDE transducers. The 

modal analysis demonstrates that at ~121 kHz, ~123 kHz and ~130 kHz, this 

metastructure can focus ultrasonic wave inside a 10 mm thick CFRP composite structure. 

By varying the distance between the metastructure and the CFRP composite plate, the 

focal point can be adjusted. Further modal analysis at ~267.5 kHz and ~271 kHz reveals 

that the metastructure is capable of generating Bessel Beam and frequency domain 

analysis clearly demonstrates long distance wave propagation with negligible attenuation 

of wave amplitude. Utilizing this capability, an ad-hoc interlock metastructure is placed 

infront of conventional NDE transducer and found that ultrasonic wave propagates 

through a combination of attenuative epoxy (Hysol 9394) and 10 mm thick CFRP 

composite plate. 

In the second approach, a computational tool is developed to visualize wave 

propagation inside a multi-layered (24-ply) 3D composite plate. This tool is developed 

from scratch utilizing Spectral Element Method due to its higher accuracy and fast 

convergence. The unique ability of this tool is to simulate wave propagation at a 

frequency range of 1 MHz to 7.5 MHz, which is not currently available in literature. The 

mathematical formulation and requirements to implement this concept in computer 

applications are demonstrated. A computer code is developed to simulate wave 

propagation. Displacement wave field and time dependent signals are collected at various 

time stamps. An experimental setup is designed to propagate ultrasonic wave at 1 MHz. 

A 8-layer 1.7 mm thick composite plate is tested and through transmission wave signals 
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are collected. The first part of the simulation results has a good agreement with similar 

part of the experimental result.  

7.2 MAJOR CONTRIBUTIONS 

A. Development of multifunctional butterfly structured metamaterials to focus 

ultrasonic wave beam at 37k kHz utilizing negative refraction phenomenon 

B. Investigation of interlock microstructure metamaterial and determination of of its 

material properties to achieve wide bandgap and demonstrate near isotropic 

behavior. Wave trapping and attenuation have been demonstrated using this 

metastructure. 

C. Design of optimized interlock structure to utilize it as an ad-hoc metastructure in 

front of conventional NDE transducer to focus ultrasonic wave inside thick 

composite materials.  

D. Generation of Bessel Beam using optimized interlock metastructure to achieve 

long distance wave propagation and utilize this phenomenon to propagate wave 

through a combination of attenuative Epoxy (Hysol 9394) and CFRP composite 

material.   

E. Development of an NDE computational method from scratch using Spectral 

Element Method to simulate wave propagation in 3D multilayered composite 

materials.  
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7.3 FUTURE RECOMMENDATIONS: 

Development of Metastructure 

A. Butterfly structured metamaterial cab be further studied to determine suitable 

constituent materials with the aim of achieving wave focusing and practical 

realization. 

B. Optimized interlock metastructure can be realized using locally available 

materials. Experimental validation of this PC could implement the idea 

proposed in this dissertation.  

Development of SEM code 

A. Application of damping co-efficient and absorbing boundary conditions will 

improve this code significantly.  

B. During temporal solution module, there is a suitable scope of parallel 

computing which will significantly improve the solution duration. 

C. Damage modeling can be introduced in this code with high frequency 

actuation.   
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